Skip to main content
Log in

Shape-free polygonal hybrid displacement-function element method for analyses of Mindlin–Reissner plates

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A high-performance shape-free polygonal hybrid displacement-function finite-element method is proposed for analyses of Mindlin–Reissner plates. The analytical solutions of displacement functions are employed to construct element resultant fields, and the three-node Timoshenko’s beam formulae are adopted to simulate the boundary displacements. Then, the element stiffness matrix is obtained by the modified principle of minimum complementary energy. With a simple division, the integration of all the necessary matrices can be performed within polygonal element region. Five new polygonal plate elements containing a mid-side node on each element edge are developed, in which element HDF-PE is for general case, while the other four, HDF-PE-SS1, HDF-PE-Free, IHDF-PE-SS1, and IHDF-PE-Free, are for the edge effects at different boundary types. Furthermore, the shapes of these new elements are quite free, i.e., there is almost no limitation on the element shape and the number of element sides. Numerical examples show that the new elements are insensitive to mesh distortions, possess excellent and much better performance and flexibility in dealing with challenging problems with edge effects, complicated loading, and material distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Cen S, Shang Y (2015) Developments of Mindlin–Reissner Plate elements. Math Probl Eng 2015:12. https://doi.org/10.1155/2015/456740

    Article  MathSciNet  MATH  Google Scholar 

  2. Nguyen-Xuan H (2017) A polygonal finite element method for plate analysis. Comput Struct 188:45–62. https://doi.org/10.1016/j.compstruc.2017.04.002

    Article  Google Scholar 

  3. Perumal L (2018) A brief review on polygonal/polyhedral finite element methods. Math Probl Eng 2018:22. https://doi.org/10.1155/2018/5792372

    Article  MathSciNet  MATH  Google Scholar 

  4. Wachspress EL (1971) A rational basis for function approximation. IMA J Appl Math 8(1):223–252

    Article  MathSciNet  Google Scholar 

  5. Ghosh S, Mukhopadhyay SN (1993) A material based finite-element analysis of heterogeneous media involving Dirichlet Tessellations. Comput Methods Appl Mech Eng 104(2):211–247. https://doi.org/10.1016/0045-7825(93)90198-7

    Article  MATH  Google Scholar 

  6. Zhang J, Katsube N (1997) A polygonal element approach to random heterogeneous media with rigid ellipses or elliptical voids. Comput Methods Appl Mech Eng 148(3–4):225–234. https://doi.org/10.1016/s0045-7825(97)00062-5

    Article  MATH  Google Scholar 

  7. Meyer M, Barr A, Lee H, Desbrun M (2002) Generalized barycentric coordinates on irregular polygons. J Graph Tools 7(1):13–22. https://doi.org/10.1080/10867651.2002.10487551

    Article  MATH  Google Scholar 

  8. Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61(12):2045–2066. https://doi.org/10.1002/nme.1141

    Article  MathSciNet  MATH  Google Scholar 

  9. Dai KY, Liu GR, Nguyen TT (2007) An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elem Anal Des 43(11–12):847–860. https://doi.org/10.1016/j.finel.2007.05.009

    Article  MathSciNet  Google Scholar 

  10. Song C, Wolf JP (1997) The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics. Comput Methods Appl Mech Eng 147(3–4):329–355. https://doi.org/10.1016/s0045-7825(97)00021-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhou PL, Cen S (2015) A novel shape-free plane quadratic polygonal hybrid stress-function element. Math Probl Eng 2015:1–13. https://doi.org/10.1155/2015/491325

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhou MJ, Cen S, Bao Y, Li CF (2014) A quasi-static crack propagation simulation based on shape-free hybrid stress-function finite elements with simple remeshing. Comput Methods Appl Mech Eng 275:159–188. https://doi.org/10.1016/j.cma.2014.03.006

    Article  MATH  Google Scholar 

  13. Cen S, Bao Y, Li CF (2016) Quasi-static crack propagation modeling using shape-free hybrid stress-function elements with drilling degrees of freedom. Int J Comput Methods 13(03):1650014. https://doi.org/10.1142/s0219876216500146

    Article  MathSciNet  MATH  Google Scholar 

  14. Peng Y, Zhang L, Pu J, Guo Q (2014) A two-dimensional base force element method using concave polygonal mesh. Eng Anal Bound Elem 42:45–50. https://doi.org/10.1016/j.enganabound.2013.09.002

    Article  MathSciNet  MATH  Google Scholar 

  15. Videla J, Natarajan S, Bordas SPA (2019) A new locking-free polygonal plate element for thin and thick plates based on Reissner-Mindlin plate theory and assumed shear strain fields. Comput Struct 220:32–42. https://doi.org/10.1016/j.compstruc.2019.04.009

    Article  Google Scholar 

  16. Katili I, Maknun IJ, Katili AM, Bordas SPA, Natarajan S (2019) A unified polygonal locking-free thin/thick smoothed plate element. Compos Struct 219:147–157. https://doi.org/10.1016/j.compstruct.2019.03.020

    Article  Google Scholar 

  17. Cen S, Wu CJ, Li Z, Shang Y, Li CF (2019) Some advances in high-performance finite element methods. Eng Comput 36(8):2811–2834. https://doi.org/10.1108/ec-10-2018-0479

    Article  Google Scholar 

  18. Arnold DN, Falk RS (1989) Edge effects in the Reissner–Mindlin plate theory. Analytical and Computational Models for Shells, pp 71–90

  19. Cen S, Shang Y, Li CF, Li HG (2014) Hybrid displacement function element method: a simple hybrid-Trefftz stress element method for analysis of Mindlin–Reissner plate. Int J Numer Methods Eng 98(3):203–234. https://doi.org/10.1002/nme.4632

    Article  MathSciNet  MATH  Google Scholar 

  20. Shang Y, Cen S, Li CF, Huang JB (2015) An effective hybrid displacement function element method for solving the edge effect of Mindlin–Reissner plate. Int J Numer Methods Eng 102(8):1449–1487. https://doi.org/10.1002/nme.4843

    Article  MathSciNet  MATH  Google Scholar 

  21. Shang Y, Cen S, Li Z, Li CF (2017) Improved hybrid displacement function (IHDF) element scheme for analysis of Mindlin–Reissner plate with edge effect. Int J Numer Methods Eng 111(12):1120–1169. https://doi.org/10.1002/nme.5496

    Article  MathSciNet  Google Scholar 

  22. Bao Y, Cen S, Li CF (2017) Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin–Reissner plates. Eng Comput 34(2):548–586. https://doi.org/10.1108/ec-04-2016-0143

    Article  Google Scholar 

  23. Huang J-B, Cen S, Shang Y, Li C-F (2017) A new triangular hybrid displacement function element for static and free vibration analyses of Mindlin–Reissner plate. Lat Am J Solids Strut 14(5):765–804

    Article  Google Scholar 

  24. Hu H (1984) Variational principles of theory of elasticity with applications. CRC Press, Boca Raton

    Google Scholar 

  25. Shang Y, Li CF, Zhou MJ (2019) A novel displacement-based Trefftz plate element with high distortion tolerance for orthotropic thick plates. Eng Anal Bound Elem 106:452–461. https://doi.org/10.1016/j.enganabound.2019.06.002

    Article  MathSciNet  MATH  Google Scholar 

  26. Shang Y, Cen S, Ouyan WG (2018) New hybrid-Trefftz Mindlin–Reissner plate elements for efficiently modeling the edge zones near free/SS1 edges. Eng Comput 35(1):136–156. https://doi.org/10.1108/ec-04-2017-0123

    Article  Google Scholar 

  27. Jelenic G, Papa E (2011) Exact solution of 3D Timoshenko beam problem using linked interpolation of arbitrary order. Arch Appl Mech 81(2):171–183. https://doi.org/10.1007/s00419-009-0403-1

    Article  MATH  Google Scholar 

  28. Ayad R, Dhatt G, Batoz JL (1998) A new hybrid-mixed variational approach for Reissner-Mindlin plates. The MiSP model. Int J Numer Methods Eng 42(7):1149–1179. https://doi.org/10.1002/(sici)1097-0207(19980815)42:7%3c1149:aid-nme391%3e3.0.co;2-2

    Article  MathSciNet  MATH  Google Scholar 

  29. Ayad R, Rigolot A (2002) An improved four-node hybrid-mixed element based upon Mindlin’s plate theory. Int J Numer Methods Eng 55(6):705–731. https://doi.org/10.1002/nme.528

    Article  MATH  Google Scholar 

  30. Morley LSD (1963) Skew plates and structures. Pergamon Press, Oxford (distributed in the Western Hemisphere by Macmillan, New York)

    MATH  Google Scholar 

  31. Babuska I, Scapolla T (1989) Benchmark computation and performance evaluation for a rhombic plate bending problem. Int J Numer Methods Eng 28(1):155–179. https://doi.org/10.1002/nme.1620280112

    Article  MathSciNet  MATH  Google Scholar 

  32. Abaqus 6.9 (2009) HTML Documentation. Dassault Systèmes Simulia Corp., Providence

    Google Scholar 

  33. Kant T, Hinton E (1983) Mindlin plate analysis by segmentation method. J Eng Mech 109(2):537–556. https://doi.org/10.1061/(asce)0733-9399(1983)109:2(537)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank for the financial supports from the National Natural Science Foundation of China (11872229, 11702133) and the Natural Science Foundation of Jiangsu Province (BK20170772).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Cen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Cj., Cen, S. & Shang, Y. Shape-free polygonal hybrid displacement-function element method for analyses of Mindlin–Reissner plates. Engineering with Computers 37, 1975–1998 (2021). https://doi.org/10.1007/s00366-019-00922-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00922-x

Keywords

Navigation