Skip to main content
Log in

Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This article presents an analytical approach to study the vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers using first-order shear deformation theory of shells. By considering the Coriolis and centrifugal force and also using Hamilton’s principle and Maxwell equations, the governing equations of motion for rotating sandwich cylindrical shell are derived. The differential quadrature method is employed to determine the forward and backward linear frequency of rotation sandwich cylindrical shell for different boundary conditions. Detailed parametric studies are carried out to investigate influences of volume fraction of carbon nanotube in face sheet layers, temperature, distribution types of porosity, different boundary conditions, angular velocity and electrical and magnetic control coefficients on vibration control of sandwich cylindrical shell. The results of the necessary parameters can be used as benchmarks for design in important industries such as low- or high-speed rotor and turbine manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Civalek O, Yavas A (2006) Large deflection static analysis of rectangular plates on two parameter elastic foundations. Int J Sci Technol 1:43–50. https://doi.org/10.1299/jsmea.44.483

    Article  Google Scholar 

  2. Civalek O, Acar MH (2007) Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int J Press Vessel Pip 84(9):527–535. https://doi.org/10.1016/j.ijpvp.2007.07.001

    Article  Google Scholar 

  3. Ghorbanpour Arani A, Rousta Navi B, Mohammadimehr M (2016) Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches. Adv Compos Mater 25(5):423–441. https://doi.org/10.1080/09243046.2015.1052189

    Article  Google Scholar 

  4. Nguyen LB, Thai CH, Nguyen Xuan H (2016) A generalized unconstrained theory and isogeometric finite element analysis based on Bézier extraction for laminated composite plates. Eng Comput 32:457–475. https://doi.org/10.1007/s00366-015-0426-x

    Article  Google Scholar 

  5. Civalek O, Demir C (2011) Buckling and bending analyses of cantilever carbon nanotubes using the Euler-Bernoulli beam theory based on non-local continuum model. Asian J Civ Eng 12(5):651–661

    Google Scholar 

  6. Mohammadimehr M, Alimirzaei S (2016) Nonlinear static and vibration analysis of Euler–Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM. Struct Eng Mech 59(3):431–454. https://doi.org/10.12989/sem.2016.59.3.431

    Article  Google Scholar 

  7. Civalek O (2014) Geometrically nonlinear dynamic and static analysis of shallow € spherical shell resting on two-parameter elastic foundations. Int J Press Vis Pip 113:1–9. https://doi.org/10.1016/j.ijpvp.2013.10.014

    Article  Google Scholar 

  8. Mercan K, Demir C, Civalek O (2016) Vibration analysis of FG cylindrical shells with € power-law index using discrete singular convolution technique. Curved Layer Struct 3:82–90. https://doi.org/10.1515/cls-2016-0007

    Article  Google Scholar 

  9. Mohammadimehr M, Mohammadimehr MA, Dashti P (2016) Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic micro-plate based on surface stress and modified couple stress theories using differential quadrature method. Appl Math Mech 37(4):529–554. https://doi.org/10.1007/s10483-016-2045-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Demir C, Civalek O (2017) A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix. Compos Struct 168:872–884. https://doi.org/10.1016/j.compstruct.2017.02.091

    Article  Google Scholar 

  11. Plattenburg J, Dreyer TJ, Singh R (2107) Vibration control of a cylindrical shell with concurrent active piezoelectric patches and passive cardboard liner. Mech Syst Signal Process 91:422–437. https://doi.org/10.1016/j.ymssp.2016.11.008

    Article  Google Scholar 

  12. AkhavanAlavi SM, Mohammadimehr M, Edjtahed SH (2019) Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method. Eur J Mech A/Solids 74:449–461. https://doi.org/10.1016/j.euromechsol.2018.12.008

    Article  MathSciNet  MATH  Google Scholar 

  13. Duc ND, Nguyen PD, Khoa ND (2017) Nonlinear dynamic analysis and vibration of eccentrically stiffened S-FGM elliptical cylindrical shells surrounded on elastic foundations in thermal environments. Thin-Walled Struct 117:178–189. https://doi.org/10.1016/j.tws.2017.04.013

    Article  Google Scholar 

  14. Sun S, Liu L, Cao D (2018) Nonlinear travelling wave vibrations of a rotating thin cylindrical shell. J Sound Vib 431:122–136. https://doi.org/10.1016/j.jsv.2018.05.042

    Article  Google Scholar 

  15. Shojaeefard MH, Mahinzare M, Safarpour H, Saedi Googarchin H, Ghadiri M (2018) Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition. Appl Math Model 61:255–279. https://doi.org/10.1016/j.apm.2018.04.015

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang Q, Shao D, Qin B (2018) A simple first-order shear deformation shell theory for vibration analysis of composite laminated open cylindrical shells with general boundary conditions. Compos Struct 184:211–232. https://doi.org/10.1016/j.compstruct.2017.09.070

    Article  Google Scholar 

  17. Ninh DG, Bich DH (2018) Characteristics of nonlinear vibration of nanocomposite cylindrical shells with piezoelectric actuators under thermo-mechanical loads. Aerosp Sci Technol 77:595–609. https://doi.org/10.1016/j.ast.2018.04.008

    Article  Google Scholar 

  18. Biswal DK, Mohanty SC (2018) Free vibration and damping characteristics study of doubly curved sandwich shell panels with viscoelastic core and isotropic/laminated constraining layer. Eur J Mech A-Solid 72:424–439. https://doi.org/10.1016/j.euromechsol.2018.06.008

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu KM, Li H (2018) Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells. J Sound Vib 426:166–185. https://doi.org/10.1016/j.jsv.2018.04.021

    Article  Google Scholar 

  20. Ebrahimi F, Hosseini SH (2019) Nonlinear vibration and dynamic instability analysis nanobeams under thermo-magneto-mechanical loads: a parametric excitation study. Eng Comput. https://doi.org/10.1007/s00366-019-00830-0

    Article  Google Scholar 

  21. Parhi A, Singh BN, Panda SK (2019) Nonlinear free vibration analysis of composite conical shell panel with cluster of delamination in hygrothermal environment. Eng Comput. https://doi.org/10.1007/s00366-019-00903-0

    Article  Google Scholar 

  22. Ebrahimi F, Barati MR, Civalek O (2019) Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng Comput. https://doi.org/10.1007/s00366-019-00742-z

    Article  Google Scholar 

  23. Mohammadimehr M, Shahedi S, Rousta Navi B (2017) Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method. Proc Inst Mech Eng, Part C: J Mech Eng Sci 231(20):3866–3885. https://doi.org/10.1177/0954406216653622

    Article  Google Scholar 

  24. Liu T, Zhang W, Mao JJ, Zheng Y (2019) Nonlinear breathing vibrations of eccentric rotating composite laminated circular cylindrical shell subjected to temperature, rotating speed and external excitations. Mech Syst Signal Process 127:463–498. https://doi.org/10.1016/j.ymssp.2019.02.061

    Article  Google Scholar 

  25. Zhong R, Tang J, Wang A, Shuai C, Wang Q (2019) An exact solution for free vibration of cross-ply laminated composite cylindrical shells with elastic restraint ends. Comput Math Appl 77(3):641–661. https://doi.org/10.1016/j.camwa.2018.10.006

    Article  MathSciNet  MATH  Google Scholar 

  26. Liang X, Zha X, Yu Y, Cao Z, Jiang X, Leng J (2019) Semi-analytical vibration analysis of FGM cylindrical shells surrounded by elastic foundations in a thermal environment. Compos Struct. https://doi.org/10.1016/j.compstruct.2019.110997

    Article  Google Scholar 

  27. Mishra BP, Barik M (2019) NURBS augmented finite element method for stability analysis of arbitrary thin plates. Eng Comput 35:351–362. https://doi.org/10.1007/s00366-018-0603-9

    Article  Google Scholar 

  28. Jrad H, Mars J, Wali M, Dammak F (2019) Geometrically nonlinear analysis of elastoplastic behavior of functionally graded shells. Eng Comput 35:833–847. https://doi.org/10.1007/s00366-018-0633-3

    Article  Google Scholar 

  29. Katariya PV, Panda SK (2019) Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings. Eng Comput 35:1009–1026. https://doi.org/10.1007/s00366-018-0646-y

    Article  Google Scholar 

  30. Li C, Li P, Zhang Z, Wen B (2020) Optimal locations of discontinuous piezoelectric laminated cylindrical shell with point supported elastic boundary conditions for vibration control. Compos Struct. https://doi.org/10.1016/j.compstruct.2019.111575

    Article  Google Scholar 

  31. Fatemi Moghadam SM, Ahmadi H (2020) Active vibration control of truncated conical shell under harmonic excitation using piezoelectric actuator. Thin Walled Struct. https://doi.org/10.1016/j.tws.2020.106642

    Article  Google Scholar 

  32. Yang X, Tiejun Y, Fuller CR, Yao S, Zhigang L (2020) A theoretical analysis on the active structural acoustical control of a vibration isolation system with a coupled plate-shell foundation. Int J Mech Sci 10:15–20. https://doi.org/10.1016/j.ijmecsci.2019.105334

    Article  Google Scholar 

  33. Dong Y, Li Y, Li X, Yang J (2020) Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Appl Math Model 82:252–270. https://doi.org/10.1016/j.apm.2020.01.054

    Article  MathSciNet  MATH  Google Scholar 

  34. Mohammadimehr M, Navi BR, Arani AG (2017) Dynamic stability of modified strain gradient theory sinusoidal viscoelastic piezoelectric polymeric functionally graded single-walled carbon nanotubes reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermo-electro-magneto-mechanical loadings. Mech Adv Mater Struct 24(16):1325–1342. https://doi.org/10.1080/15376494.2016.1227507

    Article  Google Scholar 

  35. Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T (2016) A software framework for probabilistic sensitivity analysis for computationally expensive models. Adv Eng Software 100:19–31. https://doi.org/10.1016/j.advengsoft.2016.06.005

    Article  Google Scholar 

  36. Hamdia KH, Ghasemi H, Zhuang X, Alajlan N, Rabczuk T (2018) Sensitivity and uncertainty analysis for flexoelectric nanostructures. Comput Methods Appl Mech Eng 337:95–109. https://doi.org/10.1016/j.cma.2018.03.016

    Article  MathSciNet  MATH  Google Scholar 

  37. Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T (2019) Artificial neural network methods for the solution of second order boundary value problems. Comput Mater Continua 59(1):345–359. https://doi.org/10.32604/cmc.2019.06641

    Article  Google Scholar 

  38. Guo H, Zhuang X, Rabczuk T (2019) A deep collocation method for the bending analysis of Kirchhoff plate. Comput Mater Continua 59(2):433–456. https://doi.org/10.32604/cmc.2019.06660

    Article  Google Scholar 

  39. Rabczuk T, Ren H, Zhuang X (2019) A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Comput Mater Continua 59(1):31–55. https://doi.org/10.32604/cmc.2019.04567

    Article  Google Scholar 

  40. Chen D, Kitipornchai S, Yang J (2016) Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct 107:39–48. https://doi.org/10.1016/j.tws.2016.05.025

    Article  Google Scholar 

  41. Rostami R, Mohammadimehr M, Ghannad M, Jalali A (2018) Forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by CNTs based on MCST with temperature-variable material properties. J Theor Appl Mech 8(2):97–108. https://doi.org/10.1016/j.taml.2018.02.005

    Article  Google Scholar 

  42. Mohammadimehr M, Shahedi S (2017) High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM. Compos B Eng 108:91–107. https://doi.org/10.1016/j.compositesb.2016.09.040

    Article  Google Scholar 

  43. Li YS, Pan E (2015) Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory. Int J Eng Sci 97:40–59. https://doi.org/10.1016/j.ijengsci.2015.08.009

    Article  MathSciNet  MATH  Google Scholar 

  44. Mohammafimehr M, Rostami R, Arefi M (2016) Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT. Steel Compos Struct 20(3):513–543. https://doi.org/10.12989/scs.2016.20.3.513

    Article  Google Scholar 

  45. Rouzegar G, Abad F (2015) Free vibration analysis of FG plate with piezoelectric layers using four-variable refined plate theory. Thin Walled Struct 89:76–83. https://doi.org/10.1016/j.tws.2014.12.010

    Article  Google Scholar 

  46. Mohammadimehr M, Rostami R (2018) Bending and vibration analyses of a rotating sandwich cylindrical shell considering nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields. Appl Math Mech 39:219–240. https://doi.org/10.1007/s10483-018-2301-6

    Article  MathSciNet  MATH  Google Scholar 

  47. Mohammadimehr M, Rostami R (2017) Bending, buckling, and forced vibration analyses of nonlocal nanocomposite microplate using TSDT considering MEE properties dependent to various volume fractions of CoFe2O4-BaTiO3. J Theor Appl Mech 55(3):853–868. https://doi.org/10.15632/jtam-pl.55.3.853

    Article  Google Scholar 

  48. Malekzadeh P, Heydarpour Y (2012) Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment. Compos Struct 94:2971–2981. https://doi.org/10.1016/j.compstruct.2012.04.011

    Article  Google Scholar 

  49. Chen Y, Zhao HB, Chen ZP et al (1993) Vibration of high speed rotating shells with calculations for cylindrical shells. J Sound Vib 160:137–160. https://doi.org/10.1006/jsvi.1993.1010

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments. Also, they are thankful to the Iranian Nanotechnology Development Committee for their financial support and the University of Kashan for supporting this work by Grant No. 988093/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohammadimehr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, R., Mohammadimehr, M. Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers. Engineering with Computers 38, 87–100 (2022). https://doi.org/10.1007/s00366-020-01052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01052-5

Keywords

Navigation