Skip to main content
Log in

Vibration of two-phase local/nonlocal Timoshenko nanobeams with an efficient shear-locking-free finite-element model and exact solution

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

According to paradoxical behaviors of common differential nonlocal elasticity, employing the two-phase local/nonlocal elasticity, to consider the size effects of nanostructures, has recently attracted the attentions of nano-mechanics researchers. Now, due to more complexity of the two-phase elasticity problems than the differential nonlocal ones, it is essential to achieve efficient methods for studying the mechanical characteristics of two-phase nanostructures. Therefore, in this work, the exact solution corresponding to the vibrations of two-phase Timoshenko nanobeams is provided for the first time. Furthermore, the shear-locking problem is investigated in the case of two-phase finite-element method (FEM), and since the FE model of local/nonlocal nanobeam is more complex than the classic one, due to coupling of all elements together, one of the main aims of the present work is to create an efficient locking-free local/nonlocal FEM with a simple and efficient beam element. To extract the exact natural frequencies, the basic form of two-phase elasticity is replaced with the equal differential equation and the obtained higher-order governing equations are solved by satisfying additional constitutive boundary conditions. To construct the two-phase FE model, an efficient and simple shear-locking-free Timoshenko beam element is introduced, and next, basic form of two-phase elasticity including local and integral form of nonlocal elasticity is utilized. No need for satisfying higher-order boundary conditions, shear-locking-free, simple shape functions and well convergence are advantages of the present two-phase finite element model. Several convergence and comparison studies are conducted, and the reliability and locking-free properties of the present two-phase finite element model are confirmed. Also, the influences of two-phase elasticity on the natural frequencies of Timoshenko nanobeams with different thickness ratios are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10(1):1–16

    MathSciNet  MATH  Google Scholar 

  2. Eringen AC, Edelen D (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    MathSciNet  MATH  Google Scholar 

  3. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Google Scholar 

  4. Eringen AC (2002) Nonlocal continuum field theories. Springer, Berlin

    MATH  Google Scholar 

  5. Reddy J (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45(2):288–307

    MATH  Google Scholar 

  6. Ece M, Aydogdu M (2007) Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech 190(1):185–195

    MATH  Google Scholar 

  7. Thai H-T (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56–64

    MathSciNet  MATH  Google Scholar 

  8. Eltaher M, Emam SA, Mahmoud F (2012) Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput 218(14):7406–7420

    MathSciNet  MATH  Google Scholar 

  9. Ebrahimi F, Barati MR, Civalek Ö (2019) Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng Comput 2019:1–12

    Google Scholar 

  10. Karami B, Janghorban M, Tounsi A (2019) Galerkin’s approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Eng Comput 35(4):1297–1316

    Google Scholar 

  11. Sahmani S, Fattahi A, Ahmed N (2019) Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams. Eng Comput 35(4):1173–1189

    Google Scholar 

  12. Lu P, Lee H, Lu C, Zhang P (2006) Dynamic properties of flexural beams using a nonlocal elasticity model. J Appl Phys 99(7):073510

    Google Scholar 

  13. Wang C, Zhang Y, He X (2007) Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10):105401

    Google Scholar 

  14. Thai S, Thai H-T, Vo TP, Patel VI (2017) A simple shear deformation theory for nonlocal beams. Compos Struct 23:303

    Google Scholar 

  15. Phadikar J, Pradhan S (2010) Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput Mater Sci 49(3):492–499

    Google Scholar 

  16. Challamel N, Zhang Z, Wang C, Reddy J, Wang Q, Michelitsch T et al (2014) On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach. Arch Appl Mech 84(9–11):1275–1292

    MATH  Google Scholar 

  17. Xu X-J, Deng Z-C, Zhang K, Xu W (2016) Observations of the softening phenomena in the nonlocal cantilever beams. Compos Struct 145:43–57

    Google Scholar 

  18. Fernández-Sáez J, Zaera R, Loya J, Reddy J (2016) Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int J Eng Sci 99:107–116

    MathSciNet  MATH  Google Scholar 

  19. Polyanin AD, Manzhirov AV (2008) Handbook of integral equations. CRC Press, Baco Raton

    MATH  Google Scholar 

  20. Tuna M, Kirca M (2016) Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams. Int J Eng Sci 105:80–92

    MathSciNet  MATH  Google Scholar 

  21. Tuna M, Kirca M (2016) Exact solution of Eringen's nonlocal integral model for vibration and buckling of Euler-Bernoulli beam. Int J Eng Sci 107:54–67

    MATH  Google Scholar 

  22. Romano G, Barretta R (2016) Comment on the paper “Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams” by Meral Tuna & Mesut Kirca. Int J Eng Sci 109:240–242

    MathSciNet  MATH  Google Scholar 

  23. Wang Y, Zhu X, Dai H (2016) Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. AIP Adv 6(8):085114

    Google Scholar 

  24. Tuna M, Kirca M (2017) Respond to the comment letter by Romano and Barretta on the paper “Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams”. Int J Eng Sci 116:141–144

    MathSciNet  MATH  Google Scholar 

  25. Romano G, Barretta R, Diaco M, de Sciarra FM (2017) Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int J Mech Sci 121:151–156

    Google Scholar 

  26. Ansari R, Rajabiehfard R, Arash B (2010) Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comput Mater Sci 49(4):831–838

    Google Scholar 

  27. Mahmoud F, Eltaher M, Alshorbagy A, Meletis E (2012) Static analysis of nanobeams including surface effects by nonlocal finite element. J Mech Sci Technol 26(11):3555–3563

    Google Scholar 

  28. Pradhan S (2012) Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory. Finite Elem Anal Des 50:8–20

    Google Scholar 

  29. Arash B, Wang Q, Liew KM (2012) Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation. Comput Methods Appl Mech Eng 223:1–9

    MathSciNet  MATH  Google Scholar 

  30. Eltaher M, Emam SA, Mahmoud F (2013) Static and stability analysis of nonlocal functionally graded nanobeams. Compos Struct 96:82–88

    Google Scholar 

  31. Civalek Ö, Demir C (2016) A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Appl Math Comput 289:335–352

    MathSciNet  MATH  Google Scholar 

  32. Demir Ç, Civalek Ö (2017) A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix. Compos Struct 168:872–884

    Google Scholar 

  33. Aria A, Friswell M (2019) A nonlocal finite element model for buckling and vibration of functionally graded nanobeams. Compos B Eng 166:233–246

    Google Scholar 

  34. Pisano A, Sofi A, Fuschi P (2009) Nonlocal integral elasticity: 2D finite element based solutions. Int J Solids Struct 46(21):3836–3849

    MATH  Google Scholar 

  35. Taghizadeh M, Ovesy H, Ghannadpour S (2016) Beam buckling analysis by nonlocal integral elasticity finite element method. Int J Struct Stab Dyn 16(06):1550015

    MathSciNet  MATH  Google Scholar 

  36. Khodabakhshi P, Reddy J (2015) A unified integro-differential nonlocal model. Int J Eng Sci 95:60–75

    MathSciNet  MATH  Google Scholar 

  37. Tuna M, Kirca M (2017) Bending, buckling and free vibration analysis of Euler-Bernoulli nanobeams using Eringen’s nonlocal integral model via finite element method. Compos Struct 179:269–284

    Google Scholar 

  38. Eptaimeros K, Koutsoumaris CC, Tsamasphyros G (2016) Nonlocal integral approach to the dynamical response of nanobeams. Int J Mech Sci 115:68–80

    Google Scholar 

  39. Naghinejad M, Ovesy HR (2017) Free vibration characteristics of nanoscaled beams based on nonlocal integral elasticity theory. J Vib Control. 2017:1077546317717867

    Google Scholar 

  40. Fakher M, Rahmanian S, Hosseini-Hashemi S (2019) On the carbon nanotube mass nanosensor by integral form of nonlocal elasticity. Int J Mech Sci 150:445–457

    Google Scholar 

  41. Norouzzadeh A, Ansari R (2017) Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Physica E 88:194–200

    Google Scholar 

  42. Norouzzadeh A, Ansari R, Rouhi H (2017) Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach. Appl Phys A 123(5):330

    Google Scholar 

  43. Norouzzadeh A, Ansari R, Rouhi H (2018) Isogeometric vibration analysis of small-scale Timoshenko beams based on the most comprehensive size-dependent theory. Sci Iran 25(3):1864–1878

    Google Scholar 

  44. Norouzzadeh A, Ansari R, Rouhi H (2018) Isogeometric analysis of Mindlin nanoplates based on the integral formulation of nonlocal elasticity. Multidisc Model Mater Struct 14(5):810–827

    Google Scholar 

  45. Ansari R, Torabi J, Norouzzadeh A (2018) Bending analysis of embedded nanoplates based on the integral formulation of Eringen's nonlocal theory using the finite element method. Phys B 534:90–97

    Google Scholar 

  46. Faraji-Oskouie M, Norouzzadeh A, Ansari R, Rouhi H (2019) Bending of small-scale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach. Appl Math Mech 40(6):767–782

    MathSciNet  MATH  Google Scholar 

  47. Zhu X, Li L (2017) Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity. Int J Mech Sci 133:639–650

    Google Scholar 

  48. Fernández-Sáez J, Zaera R (2017) Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory. Int J Eng Sci 119:232–248

    MathSciNet  MATH  Google Scholar 

  49. Zhu X, Wang Y, Dai H-H (2017) Buckling analysis of Euler-Bernoulli beams using Eringen’s two-phase nonlocal model. Int J Eng Sci 116:130–140

    MathSciNet  MATH  Google Scholar 

  50. Eptaimeros K, Koutsoumaris CC, Dernikas I, Zisis T (2018) Dynamical response of an embedded nanobeam by using nonlocal integral stress models. Compos B Eng 150:255–268

    Google Scholar 

  51. Wang Y, Huang K, Zhu X, Lou Z (2018) Exact solutions for the bending of Timoshenko beams using Eringen’s two-phase nonlocal model. Math Mech Solids. 2018:1081286517750008

    Google Scholar 

  52. Draiche K, Bousahla AA, Tounsi A, Alwabli AS, Tounsi A, Mahmoud S (2019) Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory. Comput Concr 24(4):369–378

    Google Scholar 

  53. Semmah A, Heireche H, Bousahla AA, Tounsi A (2019) Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT. Adv Nano Res 7(2):89

    Google Scholar 

  54. Draoui A, Zidour M, Tounsi A, Adim B (2019) Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT). J Nano Res 2019:117–135

    Google Scholar 

  55. Khiloun M, Bousahla AA, Kaci A, Bessaim A, Tounsi A, Mahmoud S (2019) Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. Eng Compute. 2019:1–15

    Google Scholar 

  56. Zaoui FZ, Ouinas D, Tounsi A (2019) New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Compos B Eng 159:231–247

    Google Scholar 

  57. Karami B, Janghorban M, Tounsi A (2019) On pre-stressed functionally graded anisotropic nanoshell in magnetic field. J Braz Soc Mecha Sci Eng 41(11):495

    Google Scholar 

  58. Patel M, Shabana AA (2018) Locking alleviation in the large displacement analysis of beam elements: the strain split method. Acta Mech 229(7):2923–2946

    MathSciNet  MATH  Google Scholar 

  59. Zienkiewicz O, Owen D, Lee K (1974) Least square-finite element for elasto-static problems Use of ‘reduced’integration. Int J Numer Methods Eng 8(2):341–358

    MATH  Google Scholar 

  60. Taylor R, Filippou F, Saritas A, Auricchio F (2003) A mixed finite element method for beam and frame problems. Comput Mech 31(1–2):192–203

    MATH  Google Scholar 

  61. Heyliger P, Reddy J (1988) A higher order beam finite element for bending and vibration problems. J Sound Vib 126(2):309–326

    MATH  Google Scholar 

  62. Lee PG, Sin HC (1994) Locking-free curved beam element based on curvature. Int J Numer Meth Eng 37(6):989–1007

    MATH  Google Scholar 

  63. Thomas D, Wilson J, Wilson R (1973) Timoshenko beam finite elements. J Sound Vib 31(3):315–330

    MATH  Google Scholar 

  64. Zhuang X, Huang R, Zhu H, Askes H, Mathisen K (2013) A new and simple locking-free triangular thick plate element using independent shear degrees of freedom. Finite Elem Anal Des 75:1–7

    MATH  Google Scholar 

  65. Monterrubio L, Ilanko S (2012) Sets of admissible functions for the Rayleigh-Ritz method. Civ Comp Proc 99:2012

    Google Scholar 

  66. Fakher M, Hosseini-Hashemi S (2017) Bending and free vibration analysis of nanobeams by differential and integral forms of nonlocal strain gradient with Rayleigh-Ritz method. Mater Res Express 4(12):125025

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrokh Hosseini-Hashemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{gathered} \alpha = EI;\,\beta = k_{s} GA; \hfill \\ K_{e} = \left[ {\begin{array}{*{20}c} {\frac{12\alpha }{{l_{e}^{3} }}} & {\frac{6\alpha }{{l_{e}^{2} }}} & 0 & { - \frac{12\alpha }{{l_{e}^{3} }}} & {\frac{6\alpha }{{l_{e}^{2} }}} & 0 \\ {\frac{6\alpha }{{l_{e}^{2} }}} & {\frac{4\alpha }{{l_{e} }}} & {\frac{\alpha }{{l_{e} }}} & { - \frac{6\alpha }{{l_{e}^{2} }}} & {\frac{2\alpha }{{l_{e} }}} & { - \frac{\alpha }{{l_{e} }}} \\ 0 & {\frac{\alpha }{{l_{e} }}} & {\frac{\alpha }{{l_{e} }} + \frac{{\beta l_{e} }}{3}} & 0 & { - \frac{\alpha }{{l_{e} }}} & { - \frac{\alpha }{{l_{e} }} + \frac{{\beta l_{e} }}{6}} \\ { - \frac{12\alpha }{{l_{e}^{3} }}} & { - \frac{6\alpha }{{l_{e}^{2} }}} & 0 & {\frac{12\alpha }{{l_{e}^{3} }}} & { - \frac{6\alpha }{{l_{e}^{2} }}} & 0 \\ {\frac{6\alpha }{{l_{e}^{2} }}} & {\frac{2\alpha }{{l_{e} }}} & { - \frac{\alpha }{{l_{e} }}} & { - \frac{6\alpha }{{l_{e}^{2} }}} & {\frac{4\alpha }{{l_{e} }}} & {\frac{\alpha }{{l_{e} }}} \\ 0 & { - \frac{\alpha }{{l_{e} }}} & { - \frac{\alpha }{{l_{e} }} + \frac{{\beta l_{e} }}{6}} & 0 & {\frac{\alpha }{{l_{e} }}} & {\frac{\alpha }{{l_{e} }} + \frac{{\beta l_{e} }}{3}} \\ \end{array} } \right]; \hfill \\ \end{gathered}$$
$$\begin{gathered} m_{1} = \rho A;\,m_{2} = \rho I; \hfill \\ M = \left[ {\begin{array}{*{20}c} {\frac{{13l_{e} m_{1} }}{35} + \frac{{6m_{2} }}{{5l_{e} }}} & {\frac{1}{210}\left( {11l_{e}^{2} m_{1} + 21m_{2} } \right)} & { - \frac{{m_{2} }}{2}} & {\frac{{9l_{e} m_{1} }}{70} - \frac{{6m_{2} }}{5l}} & {\frac{1}{420}\left( { - 13l_{e}^{2} m_{1} + 42m_{2} } \right)} & { - \frac{{m_{2} }}{2}} \\ {\frac{1}{210}\left( {11l_{e}^{2} m_{1} + 21m_{2} } \right)} & {\frac{1}{105}\left( {l_{e}^{3} m_{1} + 14l_{e} m_{2} } \right)} & {\frac{{l_{e} m_{2} }}{12}} & {\frac{1}{420}\left( {13l_{e}^{2} m_{1} - 42m_{2} } \right)} & { - \frac{1}{420}l_{e} \left( {3l_{e}^{2} m_{1} + 14m_{2} } \right)} & { - \frac{{l_{e} m_{2} }}{12}} \\ { - \frac{{m_{2} }}{2}} & {\frac{{l_{e} m_{2} }}{12}} & {\frac{{l_{e} m_{2} }}{3}} & {\frac{{m_{2} }}{2}} & { - \frac{{l_{e} m_{2} }}{12}} & {\frac{{l_{e} m_{2} }}{6}} \\ {\frac{{9l_{e} m_{1} }}{70} - \frac{{6m_{2} }}{5l}} & {\frac{1}{420}\left( {13l_{e}^{2} m_{1} - 42m_{2} } \right)} & {\frac{{m_{2} }}{2}} & {\frac{{13l_{e} m_{1} }}{35} + \frac{{6m_{2} }}{5l}} & {\frac{1}{210}\left( { - 11l_{e}^{2} m_{1} - 21m_{2} } \right)} & {\frac{{m_{2} }}{2}} \\ {\frac{1}{420}\left( { - 13l_{e}^{2} m_{1} + 42m_{2} } \right)} & { - \frac{1}{420}l_{e} \left( {3l_{e}^{2} m_{1} + 14m_{2} } \right)} & { - \frac{{l_{e} m_{2} }}{12}} & {\frac{1}{210}\left( { - 11l_{e}^{2} m_{1} - 21m_{2} } \right)} & {\frac{1}{105}\left( {l_{e}^{3} m_{1} + 14l_{e} m_{2} } \right)} & {\frac{{l_{e} m_{2} }}{12}} \\ { - \frac{{m_{2} }}{2}} & { - \frac{{l_{e} m_{2} }}{12}} & {\frac{{l_{e} m_{2} }}{6}} & {\frac{{m_{2} }}{2}} & {\frac{{l_{e} m_{2} }}{12}} & {\frac{{l_{e} m_{2} }}{3}} \\ \end{array} } \right]; \hfill \\ \end{gathered}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakher, M., Hosseini-Hashemi, S. Vibration of two-phase local/nonlocal Timoshenko nanobeams with an efficient shear-locking-free finite-element model and exact solution. Engineering with Computers 38, 231–245 (2022). https://doi.org/10.1007/s00366-020-01058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01058-z

Keywords

Navigation