Skip to main content
Log in

Artificial neural network based predictive negative hydrogen ion helicon plasma source for fusion grade large sized ion source

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Ion source operation and control is a challenging task, and the manual search of the optimized input parameter by the operator becomes a time consuming and cumbersome process. HELicon Experiment for Negative Ion Source (HELEN-I) with single driver developed at the Institute for Plasma Research (IPR) for the production negative hydrogen ion involves a multitude of interacting systems (such as Radio Frequency (RF) power, gas feed pressure, magnetic fields). This paper presents an Artificial Intelligence (AI) driven multiple-input and multiple-output model for HELEN-I to get optimized values of ion saturation current (mA) and high plasma density of order 1018/m3. The developed Artificial Neural Network (ANN) based model predicts the outputs of the HELEN-I and is further utilizes a heuristic global optimization Particle Swarm Optimization (PSO) algorithm to select optimal source parameters to predict the desired outputs without conducting real-time experiments. The experimental studies further validate the results obtained by the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

source parameter optimization of HELEN-I

Fig. 11

sourceparameters of HELEN-I

Fig. 12 a b
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pandey A, Bandyopadhyay M, Sudhir D, Chakraborty A (2017) Performance evaluation of a permanent ring magnet based helicon plasma source for negative ion source research. Rev Sci Instrum. https://doi.org/10.1063/1.4994058

    Article  Google Scholar 

  2. Boswell RW (1984) Very efficient plasma generation by whistler waves near the lower hybrid frequency. Plasma Phys Control Fusion 26:1147–1162. https://doi.org/10.1088/0741-3335/26/10/001

    Article  Google Scholar 

  3. Pandey A, Sudhir D, Bandyopadhyay M, Chakraborty A (2016) Conceptual design of a permanent ring magnet based helicon plasma source module intended to be used in a large size fusion grade ion source. Fusion Eng Des 103:1–7. https://doi.org/10.1016/j.fusengdes.2015.11.025

    Article  Google Scholar 

  4. Edelen AL, Biedron SG, Chase BE, Edstrom D, Milton SV, Stabile P (2016) Neural networks for modeling and control of particle accelerators. IEEE Trans Nucl Sci 63(2):878–897. https://doi.org/10.1109/TNS.2016.2543203

    Article  Google Scholar 

  5. Scheinker A, Edelen A, Bohler D, Emma C, Lutman A (2018) Demonstration of model-independent control of the longitudinal phase space of electron beams in the linac-coherent light source with femtosecond resolution. Phys Rev Lett 121:44801. https://doi.org/10.1103/PhysRevLett.121.044801

    Article  Google Scholar 

  6. Huang X, Corbett J, Safranek J, Wu J (2013) An algorithm for online optimization of accelerators. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 726:77–83. https://doi.org/10.1016/j.nima.2013.05.046

    Article  Google Scholar 

  7. Brown SK, Mead WC, Bowling PS, Jones RD, Barnes CW (1994) Optimization and control of a small angle ion source using an adaptive neural network controller (invited). Rev Sci Instrum 65:1411–1415. https://doi.org/10.1063/1.1144978

    Article  Google Scholar 

  8. Kong YB, Hur MG, Lee EJ, Park JH, Park YD, Yang SD (2016) Predictive ion source control using artificial neural network for RFT-30 cyclotron. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 806:55–60. https://doi.org/10.1016/j.nima.2015.09.095

    Article  Google Scholar 

  9. Scheinker DBA, Rees D, Garnett B, Milton S, Edelen AL (2018) Applying artificial intelligence to accelerators. IPAC 2018 Ninth Int Part Accel Conf. https://doi.org/10.18429/JACOW-IPAC2016-TUOBB02

    Article  Google Scholar 

  10. Pandey A, Mukherjee D, Borah D, Bandyopadhyay M, Tyagi H, Yadav R, Chakraborty A (2019) Characterization of hydrogen plasma in a permanent ring magnet based helicon plasma source for negative ion source research. Plasma Phys Control Fusion. https://doi.org/10.1088/1361-6587/ab0f09

    Article  Google Scholar 

  11. Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014) Intriguing properties of neural networks. In: 2nd International Conference on Learning Representations ICLR 2014 - Conference Track Proceedings. Banff, pp 1–10

  12. Shanmuganathan S, Samarasinghe S (2016) Artificial neural network modelling. https://doi.org/10.1088/0031-9155/49/12/004

    Article  Google Scholar 

  13. R. Murray-Smith, D. Neumerkel, D. Sbarbaro-Hofer (1992) Neural networks for modelling and control of a nonlinear dynamic system. IEEE Int Symp Intell Control—Proc https://doi.org/10.1109/ISIC.1992.225125

  14. Fernandez FG, Santos ISL, Redondo FL, Izquierdo S, Vega-carrillo HR, Cervantes-viramontes JM, Martín V, Caocci G, Radi A, Luis J, Rosa G, Mareš J (2013) Artificial neural networks – architectures and applications. In Tech. https://doi.org/10.5772/3409

  15. Hussain MA (1999) Review of the applications of neural networks in chemical process control—simulation and online implementation. Artif Intell Eng 13:55–68. https://doi.org/10.1016/S0954-1810(98)00011-9

    Article  Google Scholar 

  16. Shen YF, Pokharel R, Nizolek TJ, Kumar A, Lookman T (2019) Convolutional neural network-based method for real-time orientation indexing of measured electron backscatter diffraction patterns. Acta Mater 170:118–131. https://doi.org/10.1016/j.actamat.2019.03.026

    Article  Google Scholar 

  17. Pieck M (2009) Artificial intelligence research in particle accelerator control systems for beam line tuning. In: Proceedings 24th LINAC 2008, Victoria, British Columbia, pp 314–316

  18. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  19. Demuth H, Beale M (2005) MATLAB neural networks toolbox v4 user's guide. Mathworks Inc. https://doi.org/10.1016/j.neunet.2005.10.002

    Article  Google Scholar 

  20. Wilamowski B, Irwin J (eds) (2011) The industrial electronics handbook - five volume set. CRC Press, Boca Raton. https://doi.org/10.1201/NOE1439802892

  21. Wang W, Pedretti G, Milo V, Carboni R, Calderoni A, Ramaswamy N, Spinelli AS, Ielmini D (2019) Computing of temporal information in spiking neural networks with ReRAM synapses. Faraday Discuss 213:453–469. https://doi.org/10.1039/c8fd00097b

    Article  Google Scholar 

  22. Abdi H, Valentin D, Edelman B, O'Toole AJ (1996) A Widrow-Hoff learning rule for a generalization of the linear auto-associator. J Math Psychol 40:175–182. https://doi.org/10.1006/jmps.1996.0017

    Article  MATH  Google Scholar 

  23. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation (No. ICS-8506). Calif Univ San Diego La Jolla Inst Cogn Sci 1:318–362. https://doi.org/10.1016/B978-1-4832-1446-7.50035-2

    Article  Google Scholar 

  24. Hagan MT, Menhaj MB (1996) Brief Papers. Brain Cogn 32:273–344. https://doi.org/10.1006/brcg.1996.0066

    Article  Google Scholar 

  25. Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6:525–533. https://doi.org/10.1016/S0893-6080(05)80056-5

    Article  Google Scholar 

  26. Awolusi TF, Oke OL, Akinkurolere OO, Sojobi AO, Aluko OG (2019) Performance comparison of neural network training algorithms in the modeling properties of steel fiber reinforced concrete. Heliyon 5:e01115. https://doi.org/10.1016/j.heliyon.2018.e01115

    Article  Google Scholar 

  27. Mukherjee I, Routroy S (2012) Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process. Expert Syst Appl 39:2397–2407. https://doi.org/10.1016/j.eswa.2011.08.087

    Article  Google Scholar 

  28. Andrei N (2007) Scaled conjugate gradient algorithms for unconstrained optimization. Comput Optim Appl 38:401–416. https://doi.org/10.1007/s10589-007-9055-7

    Article  MathSciNet  MATH  Google Scholar 

  29. Lourakis MIA (2005) A brief description of the Levenberg–Marquardt algorithm implemened by levmar. Matrix 3:2. https://doi.org/10.1016/j.ijinfomgt.2009.10.001

    Article  Google Scholar 

  30. Botchkarev A (2018) Evaluating performance of regression machine learning models using multiple error metrics in azure machine learning studio. SSRN Electron J. https://doi.org/10.2139/ssrn.3177507

    Article  Google Scholar 

  31. Hagan MT, Demuth HB, De Jesús O (2002) An introduction to the use of neural networks in control systems. Int J Robust Nonlinear Control 12:959–985. https://doi.org/10.1002/rnc.727

    Article  MATH  Google Scholar 

  32. Ian G, Yoshua B, Aaron C (2016) Deep learning. https://www.deeplearningbook.org/front_matter.pdf. Accessed 08 May 2020

  33. Kang KU, An DH, Chang HS, Chai JS (2008) Performance optimization of H—multicusp ion source for KIRAMS-30 cyclotron. Rev Sci Instrum 79:2006–2009. https://doi.org/10.1063/1.2819336

    Article  Google Scholar 

  34. Abdmouleh Z, Gastli A, Ben-Brahim L, Haouari M, Al-Emadi NA (2017) Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renew Energy 113:266–280. https://doi.org/10.1016/j.renene.2017.05.087

    Article  Google Scholar 

  35. Bai Q (2016) Analysis of particle swarm optimization algorithm. Comput Inf Sci 3:180–184

    Google Scholar 

  36. Chunkai Zhang, Huihe Shao, Yu Li (2002) Particle swarm optimisation for evolving artificial neural network, pp 2487–2490. 1https://doi.org/10.1109/icsmc.2000.88436610.1109/icsmc.2000.884366

  37. P.N. Suganthan (1999) Particle swarm optimiser with neighbourhood operator. In: Proc 1999 Congr Evol Comput CEC 1999. Vol 3, pp 1958–1962 10.1109/CEC.1999.785514

  38. Ribeiro MI (2004) Gaussian probability density functions: properties and error characterization. Institute for systems and robotics, Instituto superior tcnico. [Online]. Available: http://hans.fugal.net/comps/papers/ribeiro_2004.pdf Accessed 08 May 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Shukla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, V., Bandyopadhyay, M., Pandya, V. et al. Artificial neural network based predictive negative hydrogen ion helicon plasma source for fusion grade large sized ion source. Engineering with Computers 38, 347–364 (2022). https://doi.org/10.1007/s00366-020-01060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01060-5

Keywords

Navigation