Skip to main content
Log in

A numerical solution of time-fractional mixed diffusion and diffusion-wave equation by an RBF-based meshless method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, we have developed an radial basis function (RBF) based meshless method to solve the time-fractional mixed diffusion and diffusion-wave equation which involves two fractional Caputo derivatives of order \(\alpha \in (0,1)\) and \(\beta \in (1,2)\). The unconditional stability of the proposed numerical scheme is discussed and proved theoretically. The time semi discretization has been done by using the finite difference method and for space discretization, we proposed an RBF-based local collocation method. Some test problems are considered for regular as well as an irregular domain with uniform and non-uniform points to validate the efficiency and accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abbaszadeh M, Dehghan M (2017) An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer Algor 75(1):173–211

    MathSciNet  MATH  Google Scholar 

  2. Abbaszadeh M, Dehghan M (2019) Meshless upwind local radial basis function-finite difference technique to simulate the time-fractional distributed-order advection–diffusion equation. In: Engineering with computers, pp 1–17

  3. Abbaszadeh M, Dehghan M (2020) A finite-difference procedure to solve weakly singular integro partial differential equation with space-time fractional derivatives. In: Engineering with computers, pp 1–10

  4. Alpesh K, Akanksha B (2020) A local meshless method for time fractional nonlinear diffusion wave equation. Numer Algor. https://doi.org/10.1007/s11075-019-00866-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Alpesh K, Akanksha B, Shruti D (2020) A local meshless method to approximate the time-fractional telegraph equation. Eng Comput. https://doi.org/10.1007/s00366-020-01006-x

    Article  MATH  Google Scholar 

  6. Aslefallah M, Shivanian E (2018) An efficient meshless method based on rbfs for the time fractional diffusion-wave equation. Afrika Matematika 29(7–8):1203–1214

    MathSciNet  MATH  Google Scholar 

  7. Assari P, Cuomo S (2019) The numerical solution of fractional differential equations using the volterra integral equation method based on thin plate splines. Eng Comput 35(4):1391–1408

    Google Scholar 

  8. Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210

    MATH  Google Scholar 

  9. Baseri A, Abbasbandy S, Babolian E (2018) A collocation method for fractional diffusion equation in a long time with chebyshev functions. Appl Math Comput 322:55–65

    MathSciNet  MATH  Google Scholar 

  10. Bhardwaj A, Kumar A (2020) Numerical solution of time fractional tricomi-type equation by an rbf based meshless method. Eng Anal Bound Elem 118:96–107

    MathSciNet  MATH  Google Scholar 

  11. Bhrawy AH, Zaky MA, Baleanu D (2015) New numerical approximations for space-time fractional burgers’ equations via a legendre spectral-collocation method. Rom Rep Phys 67(2):340–349

    Google Scholar 

  12. Chen W, Ye L, Sun H (2010) Fractional diffusion equations by the kansa method. Comput Math Appl 59(5):1614–1620

    MathSciNet  MATH  Google Scholar 

  13. Dehghan M, Abbaszadeh M (2018) An efficient technique based on finite difference/finite element method for solution of two-dimensional space/multi-time fractional bloch-torrey equations. Appl Numer Math 131:190–206

    MathSciNet  MATH  Google Scholar 

  14. Dehghan M, Abbaszadeh M, Mohebbi A (2014) The numerical solution of nonlinear high dimensional generalized benjamin-bona-mahony-burgers equation via the meshless method of radial basis functions. Comput Math Appl 68(3):212–237

    MathSciNet  MATH  Google Scholar 

  15. Dehghan M, Safarpoor M, Abbaszadeh M (2015) Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J Comput Appl Math 290:174–195

    MathSciNet  MATH  Google Scholar 

  16. Dehghan M, Abbaszadeh M, Mohebbi A (2016) Analysis of a meshless method for the time fractional diffusion-wave equation. Numer Algor 73(2):445–476

    MathSciNet  MATH  Google Scholar 

  17. Eshaghi J, Kazem S, Adibi H (2019) The local discontinuous galerkin method for 2d nonlinear time-fractional advection-diffusion equations. Eng Comput 35(4):1317–1332

    Google Scholar 

  18. Fakhar-Izadi F (2020) Fully petrov–galerkin spectral method for the distributed-order time-fractional fourth-order partial differential equation. In: Engineering with computers, pp 1–10

  19. Feng L, Liu F, Turner I (2019) Finite difference/finite element method for a novel 2d multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains. Commun Nonlinear Sci Numer Simul 70:354–371

    MathSciNet  MATH  Google Scholar 

  20. Gao G, Sun Z, Zhang Y (2012) A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J Comput Phys 231(7):2865–2879

    MathSciNet  MATH  Google Scholar 

  21. Ghehsareh HR, Zaghian A, Raei M (2018) A local weak form meshless method to simulate a variable order time-fractional mobile–immobile transport model. Eng Anal Bound Elem 90:63–75

    MathSciNet  MATH  Google Scholar 

  22. Ghehsareh HR, Raei M, Zaghian A (2019) Application of meshless local petrov–galerkin technique to simulate two-dimensional time-fractional tricomi-type problem. J Braz Soc Mech Sci Eng 41(6):252

    Google Scholar 

  23. Haq S, Hussain M, Ghafoor A (2019) A computational study of variable coefficients fractional advection–diffusion–reaction equations via implicit meshless spectral algorithm. In: Engineering with computers, pp 1–21

  24. Heydari MH, Avazzadeh Z (2020) New formulation of the orthonormal bernoulli polynomials for solving the variable-order time fractional coupled boussinesq–burger’s equations. In: Engineering with computers, pp 1–9

  25. Hidayat MIP, Ariwahjoedi B, Parman S (2016) B-spline collocation method for boundary value problems in complex domains. Int J Comput Sci Math 7(2):110–125

    MathSciNet  MATH  Google Scholar 

  26. Hosseini VR, Shivanian E, Chen W (2016) Local radial point interpolation (mlrpi) method for solving time fractional diffusion-wave equation with damping. J Comput Phys 312:307–332

    MathSciNet  MATH  Google Scholar 

  27. Hosseininia M, Heydari MH, Rouzegar J, Cattani C (2019) A meshless method to solve nonlinear variable-order time fractional 2d reaction–diffusion equation involving mittag-leffler kernel. In: Engineering with computers, pp 1–13

  28. Jin B, Lazarov R, Liu Y, Zhou Z (2015) The galerkin finite element method for a multi-term time-fractional diffusion equation. J Comput Phys 281:825–843

    MathSciNet  MATH  Google Scholar 

  29. Karamali G, Dehghan M, Abbaszadeh M (2019) Numerical solution of a time-fractional pde in the electroanalytical chemistry by a local meshless method. Eng Comput 35(1):87–100

    Google Scholar 

  30. Kazem S, Dehghan M (2019) Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (mol). Eng Comput 35(1):229–241

    Google Scholar 

  31. Kumar A, Bhardwaj A, Rathish Kumar BV (2019) A meshless local collocation method for time fractional diffusion wave equation. Comput Math Appl 78(6):1851–1861

    MathSciNet  MATH  Google Scholar 

  32. Li X (2012) Numerical solution of fractional differential equations using cubic b-spline wavelet collocation method. Commun Nonlinear Sci Numer Simul 17(10):3934–3946

    MathSciNet  MATH  Google Scholar 

  33. Li C, Wang Z (2019) The local discontinuous galerkin finite element methods for caputo-type partial differential equations: numerical analysis. Appl Numer Math 140:1–22

    MathSciNet  MATH  Google Scholar 

  34. Liu Q, Gu YT, Zhuang P, Liu F, Nie YF (2011) An implicit rbf meshless approach for time fractional diffusion equations. Comput Mech 48(1):1–12

    MathSciNet  MATH  Google Scholar 

  35. Liu Q, Liu F, Turner I, Anh V (2011) Finite element approximation for a modified anomalous subdiffusion equation. Appl Math Model 35(8):4103–4116

    MathSciNet  MATH  Google Scholar 

  36. Liu Z, Liu F, Zeng F (2019) An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations. Appl Numer Math 136:139–151

    MathSciNet  MATH  Google Scholar 

  37. Liu Y, Sun HG, Yin X, Feng L (2020) Fully discrete spectral method for solving a novel multi-term time-fractional mixed diffusion and diffusion-wave equation. Zeitschrift für angewandte Mathematik und Physik 71(1):21

    MathSciNet  MATH  Google Scholar 

  38. Lopez-Marcos JC (1990) A difference scheme for a nonlinear partial integrodifferential equation. SIAM J Numer Anal 27(1):20–31

    MathSciNet  MATH  Google Scholar 

  39. Magin RL (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59(5):1586–1593

    MathSciNet  MATH  Google Scholar 

  40. Mardani A, Hooshmandasl MR, Heydari MH, Cattani C (2018) A meshless method for solving the time fractional advection–diffusion equation with variable coefficients. Comput Math Appl 75(1):122–133

    MathSciNet  MATH  Google Scholar 

  41. Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A Math Gen 37(31):R161

    MathSciNet  MATH  Google Scholar 

  42. Mirzaee F, Samadyar N (2019) Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection–diffusion equations. In: Engineering with computers, pp 1–14

  43. Mohebbi A, Abbaszadeh M, Dehghan M (2014) The meshless method of radial basis functions for the numerical solution of time fractional telegraph equation. Int J Numer Methods Heat Fluid Flow

  44. Nagy AM (2017) Numerical solution of time fractional nonlinear klein-gordon equation using sinc-chebyshev collocation method. Appl Math Comput 310:139–148

    MathSciNet  MATH  Google Scholar 

  45. Oruç Ö (2019) A meshless multiple-scale polynomial method for numerical solution of 3d convection–diffusion problems with variable coefficients. Eng Comput x:1–14

    Google Scholar 

  46. Oruç Ö, Esen A, Bulut F (2019) A haar wavelet approximation for two-dimensional time fractional reaction-subdiffusion equation. Eng Comput 35(1):75–86

    Google Scholar 

  47. Safari F, Azarsa P (2019) Backward substitution method based on müntz polynomials for solving the nonlinear space fractional partial differential equations. Math Methods Appl Sci

  48. Salehi R (2017) A meshless point collocation method for 2-d multi-term time fractional diffusion-wave equation. Numer Algor 74(4):1145–1168

    MathSciNet  MATH  Google Scholar 

  49. Shivanian E, Jafarabadi A (2018) The spectral meshless radial point interpolation method for solving an inverse source problem of the time-fractional diffusion equation. Appl Numer Math 129:1–25

    MathSciNet  MATH  Google Scholar 

  50. Sun Z, Xiaonan W (2006) A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math 56(2):193–209

    MathSciNet  MATH  Google Scholar 

  51. Sun Z, Ji C, Ruilian D (2020) A new analytical technique of the l-type difference schemes for time fractional mixed sub-diffusion and diffusion-wave equations. Appl Math Lett 102:106115

    MathSciNet  MATH  Google Scholar 

  52. Tayebi A, Shekari Y, Heydari MH (2017) A meshless method for solving two-dimensional variable-order time fractional advection–diffusion equation. J Comput Phys 340:655–669

    MathSciNet  MATH  Google Scholar 

  53. Vong S, Wang Z (2014) A compact difference scheme for a two dimensional fractional klein-gordon equation with neumann boundary conditions. J Comput Phys 274:268–282

    MathSciNet  MATH  Google Scholar 

  54. Wei S, Chen W, Hon Y-C (2015) Implicit local radial basis function method for solving two-dimensional time fractional diffusion equations. Therm Sci 19(suppl. 1):59–67

    Google Scholar 

  55. Yang JY, Zhao YM, Liu N, Bu WP, Xu TL, Tang YF (2015) An implicit mls meshless method for 2-d time dependent fractional diffusion-wave equation. Appl Math Model 39(3–4):1229–1240

    MathSciNet  MATH  Google Scholar 

  56. Yuste SB, Acedo L (2005) An explicit finite difference method and a new von neumann-type stability analysis for fractional diffusion equations. SIAM J Numer Anal 42(5):1862–1874

    MathSciNet  MATH  Google Scholar 

  57. Zeng F, Zhang Z, Karniadakis GE (2016) Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J Comput Phys 307:15–33

    MathSciNet  MATH  Google Scholar 

  58. Zhao Y, Wang F, Xiaohan H, Shi Z, Tang Y (2019) Anisotropic linear triangle finite element approximation for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficient on 2d bounded domain. Comput Math Appl 78(5):1705–1719

    MathSciNet  MATH  Google Scholar 

  59. Zhuang P, Gu YT, Liu F, Turner I, Yarlagadda PKDV (2011) Time-dependent fractional advection–diffusion equations by an implicit mls meshless method. Int J Numer Meth Eng 88(13):1346–1362

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their valuable comments and suggestions, which helped us to improve the presentation of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alpesh Kumar.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, A., Kumar, A. A numerical solution of time-fractional mixed diffusion and diffusion-wave equation by an RBF-based meshless method. Engineering with Computers 38, 1883–1903 (2022). https://doi.org/10.1007/s00366-020-01134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01134-4

Keywords

Navigation