Skip to main content

Advertisement

Log in

A modified self-adaptive marine predators algorithm: framework and engineering applications

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The application of metaheuristic algorithms is one of the most promising approaches for solving real-world problems. The marine predators algorithm (MPA) is a recently proposed population-based metaheuristic algorithm that has been proven to be competitive with other algorithms. Although the MPA shows good performance compared with other algorithms, modifications are still necessary to improve its optimization performance. Therefore, this paper proposes a modified MPA (MMPA). First, a logistic opposition-based learning (LOBL) mechanism is put forward to improve the population diversity and generate more accurate solutions. Second, effective self-adaptive updating methods are introduced into the original MPA, such as proposing the new position-updating rule, inertia weight coefficient and nonlinear step size control parameter strategy. The validity of the MMPA is tested on 23 classical benchmark functions, CEC 2020 functions and four real-world problems. Furthermore, the proposed algorithm is also evaluated using high-dimensional (Dim = 100, 1000 and 2000) benchmark functions. The experimental results and two different statistical tests demonstrate that the MMPA exhibits superior performance, and that it is competitive with many state-of-the-art algorithms in terms of accuracy, convergence speed, and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Katebi J, Shoaei-parchin M, Shariati M et al (2020) Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Eng Comput 36:1539–1558. https://doi.org/10.1007/s00366-019-00780-7

    Article  Google Scholar 

  2. Lai X, Zhou Y (2019) An adaptive parallel particle swarm optimization for numerical optimization problems. Neural Comput Appl 31:6449–6467. https://doi.org/10.1007/s00521-018-3454-9

    Article  Google Scholar 

  3. Wu G (2016) Across neighborhood search for numerical optimization. Inf Sci (Ny) 329:597–618. https://doi.org/10.1016/j.ins.2015.09.051

    Article  MATH  Google Scholar 

  4. Kamboj VK, Nandi A, Bhadoria A, Sehgal S (2020) An intensify Harris Hawks optimizer for numerical and engineering optimization problems. Appl Soft Comput J 89:106018. https://doi.org/10.1016/j.asoc.2019.106018

    Article  Google Scholar 

  5. Yu H, Li W, Chen C et al (2020) Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis. Eng Comput. https://doi.org/10.1007/s00366-020-01174-w

    Article  Google Scholar 

  6. Hussain K, Mohd Salleh MN, Cheng S, Shi Y (2019) Metaheuristic research: a comprehensive survey. Artif Intell Rev 52:2191–2233. https://doi.org/10.1007/s10462-017-9605-z

    Article  Google Scholar 

  7. Dhiman G, Kumar V (2018) Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowl-Based Syst 159:20–50. https://doi.org/10.1016/j.knosys.2018.06.001

    Article  Google Scholar 

  8. Hwang C-R (1988) Simulated annealing: Theory and applications. Acta Appl Math 12:108–111. https://doi.org/10.1007/BF00047572

    Article  Google Scholar 

  9. Ozsoydan FB, Baykasoglu A (2019) A swarm intelligence-based algorithm for the set-union knapsack problem. Futur Gener Comput Syst 93:560–569. https://doi.org/10.1016/j.future.2018.08.002

    Article  Google Scholar 

  10. Li S, Chen H, Wang M et al (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  11. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  12. Kumar P, Mukherjee S, Saini R et al (2019) Multimodal gait recognition with inertial sensor data and video using evolutionary algorithm. IEEE Trans Fuzzy Syst 27:956–965. https://doi.org/10.1109/TFUZZ.2018.2870590

    Article  Google Scholar 

  13. Fan Q, Huang H, Li Y et al (2021) Beetle antenna strategy based grey wolf optimization. Expert Syst Appl 165:113882. https://doi.org/10.1016/j.eswa.2020.113882

    Article  Google Scholar 

  14. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  15. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks, pp 1942–1948. Doi: https://doi.org/10.1109/ICNN.1995.488968

  16. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697. https://doi.org/10.1016/j.asoc.2007.05.007

    Article  Google Scholar 

  17. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (Ny) 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  18. Yang X-S, Deb S (2009) Cuckoo search via levy flights. IEEE World Congr Nat Biol Inspired Comput NaBIC 2009:210–214. https://doi.org/10.1109/NABIC.2009.5393690

    Article  Google Scholar 

  19. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  20. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  21. Mahdavi S, Shiri ME, Rahnamayan S (2015) Metaheuristics in large-scale global continues optimization: a survey. Inf Sci (Ny) 295:407–428. https://doi.org/10.1016/j.ins.2014.10.042

    Article  MathSciNet  Google Scholar 

  22. Bouyer A, Hatamlou A (2018) An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms. Appl Soft Comput 67:172–182. https://doi.org/10.1016/j.asoc.2018.03.011

    Article  Google Scholar 

  23. Morales-Castañeda B, Zaldívar D, Cuevas E et al (2019) An improved Simulated Annealing algorithm based on ancient metallurgy techniques. Appl Soft Comput 84:105761. https://doi.org/10.1016/j.asoc.2019.105761

    Article  Google Scholar 

  24. Dhargupta S, Ghosh M, Mirjalili S, Sarkar R (2020) Selective opposition based Grey Wolf optimization. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113389

    Article  Google Scholar 

  25. Hu P, Pan J-S, Chu S-C (2020) Improved binary Grey Wolf Optimizer and Its application for feature selection. Knowl-Based Syst 195:105746. https://doi.org/10.1016/j.knosys.2020.105746

    Article  Google Scholar 

  26. Liu Q, Ren H-P, Tang R-J, Yao J-L (2020) Optimizing co-existing multicast routing trees in IP network via discrete artificial fish school algorithm. Knowl-Based Syst 191:105276. https://doi.org/10.1016/j.knosys.2019.105276

    Article  Google Scholar 

  27. Wang J, Chi D, Wu J, Lu H (2011) Chaotic time series method combined with particle swarm optimization and trend adjustment for electricity demand forecasting. Expert Syst Appl 38:8419–8429. https://doi.org/10.1016/j.eswa.2011.01.037

    Article  Google Scholar 

  28. Chang B-M, Tsai H-H, Chou W-L (2013) Using visual features to design a content-based image retrieval method optimized by particle swarm optimization algorithm. Eng Appl Artif Intell 26:2372–2382. https://doi.org/10.1016/j.engappai.2013.07.018

    Article  Google Scholar 

  29. Djenouri Y, Belhadi A, Belkebir R (2018) Bees swarm optimization guided by data mining techniques for document information retrieval. Expert Syst Appl 94:126–136. https://doi.org/10.1016/j.eswa.2017.10.042

    Article  Google Scholar 

  30. Qin W, Zhuang Z, Liu Y, Tang O (2019) A two-stage ant colony algorithm for hybrid flow shop scheduling with lot sizing and calendar constraints in printed circuit board assembly. Comput Ind Eng 138:106115. https://doi.org/10.1016/j.cie.2019.106115

    Article  Google Scholar 

  31. Tubishat M, Abushariah MAM, Idris N, Aljarah I (2019) Improved whale optimization algorithm for feature selection in Arabic sentiment analysis. Appl Intell 49:1688–1707. https://doi.org/10.1007/s10489-018-1334-8

    Article  Google Scholar 

  32. Wang P, Zhou Y, Luo Q et al (2020) Complex-valued encoding metaheuristic optimization algorithm: a comprehensive survey. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.06.112

    Article  Google Scholar 

  33. Wu G, Mallipeddi R, Suganthan PN (2019) Ensemble strategies for population-based optimization algorithms—a survey. Swarm Evol Comput 44:695–711. https://doi.org/10.1016/j.swevo.2018.08.015

    Article  Google Scholar 

  34. Li Z, Lin X, Zhang Q, Liu H (2020) Evolution strategies for continuous optimization: a survey of the state-of-the-art. Swarm Evol Comput 56:100694. https://doi.org/10.1016/j.swevo.2020.100694

    Article  Google Scholar 

  35. Yapici H, Cetinkaya N (2019) A new meta-heuristic optimizer: Pathfinder algorithm. Appl Soft Comput 78:545–568. https://doi.org/10.1016/j.asoc.2019.03.012

    Article  Google Scholar 

  36. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: A novel optimization algorithm. Knowl-Based Syst 191:105190. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  37. Hashim FA, Houssein EH, Mabrouk MS et al (2019) Henry gas solubility optimization: a novel physics-based algorithm. Futur Gener Comput Syst 101:646–667. https://doi.org/10.1016/j.future.2019.07.015

    Article  Google Scholar 

  38. Holland J (1975) Adaptation in natural and artificial systems. Univ Michigan Press, Michigan

    Google Scholar 

  39. Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  40. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11:1–18. https://doi.org/10.1162/106365603321828970

    Article  Google Scholar 

  41. Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on evolutionary computation, pp 71–78. Doi: https://doi.org/10.1109/CEC.2013.6557555

  42. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377. https://doi.org/10.1016/j.eswa.2020.113377

    Article  Google Scholar 

  43. García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci (Ny) 180:2044–2064. https://doi.org/10.1016/j.ins.2009.12.010

    Article  Google Scholar 

  44. Theodorsson-Norheim E (1987) Friedman and Quade tests: BASIC computer program to perform nonparametric two-way analysis of variance and multiple comparisons on ranks of several related samples. Comput Biol Med 17:85–99. https://doi.org/10.1016/0010-4825(87)90003-5

    Article  Google Scholar 

  45. Tizhoosh HR (2005) Opposition-Based Learning: A New Scheme for Machine Intelligence. In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), pp 695–701. Doi: https://doi.org/10.1109/CIMCA.2005.1631345

  46. Hui Wang, Hui Li, Yong Liu, et al (2007) Opposition-based particle swarm algorithm with cauchy mutation. In: 2007 IEEE Congress on Evolutionary Computation, pp 4750–4756. Doi: https://doi.org/10.1109/CEC.2007.4425095

  47. Rahnamayan S, Wang GG, Ventresca M (2012) An intuitive distance-based explanation of opposition-based sampling. Appl Soft Comput 12:2828–2839. https://doi.org/10.1016/j.asoc.2012.03.034

    Article  Google Scholar 

  48. Zhou Y, Hao JK, Duval B (2017) Opposition-based memetic search for the maximum diversity problem. IEEE Trans Evol Comput 21:731–745. https://doi.org/10.1109/TEVC.2017.2674800

    Article  Google Scholar 

  49. Liang Z, Zhang J, Feng L, Zhu Z (2019) A hybrid of genetic transform and hyper-rectangle search strategies for evolutionary multi-tasking. Expert Syst Appl 138:112798. https://doi.org/10.1016/j.eswa.2019.07.015

    Article  Google Scholar 

  50. Elaziz MA, Oliva D, Xiong S (2017) An improved Opposition-Based Sine Cosine Algorithm for global optimization. Expert Syst Appl 90:484–500. https://doi.org/10.1016/j.eswa.2017.07.043

    Article  Google Scholar 

  51. Guo Z, Cheng B, Ye M, Cao B (2006) Self-adaptive chaos differential evolution. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 4221 LNCS, pp 972–975. Doi: https://doi.org/10.1007/11881070_128

  52. Yu H, Zhao N, Wang P et al (2020) Chaos-enhanced synchronized bat optimizer. Appl Math Model 77:1201–1215. https://doi.org/10.1016/j.apm.2019.09.029

    Article  Google Scholar 

  53. Tian D, Zhao X, Shi Z (2019) Chaotic particle swarm optimization with sigmoid-based acceleration coefficients for numerical function optimization. Swarm Evol Comput 51:100573. https://doi.org/10.1016/j.swevo.2019.100573

    Article  Google Scholar 

  54. Rao RV, Keesari HS (2018) Multi-team perturbation guiding Jaya algorithm for optimization of wind farm layout. Appl Soft Comput 71:800–815. https://doi.org/10.1016/j.asoc.2018.07.036

    Article  Google Scholar 

  55. Yu K, Wang X, Wang Z (2016) An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems. J Intell Manuf 27:831–843. https://doi.org/10.1007/s10845-014-0918-3

    Article  Google Scholar 

  56. Gupta S, Deep K, Mirjalili S, Kim JH (2020) A modified sine cosine algorithm with novel transition parameter and mutation operator for global optimization. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113395

    Article  Google Scholar 

  57. Mirjalili S, Gandomi AH (2017) Chaotic gravitational constants for the gravitational search algorithm. Appl Soft Comput 53:407–419. https://doi.org/10.1016/j.asoc.2017.01.008

    Article  Google Scholar 

  58. Emary E, Zawbaa HM, Sharawi M (2019) Impact of Lèvy flight on modern meta-heuristic optimizers. Appl Soft Comput 75:775–789. https://doi.org/10.1016/j.asoc.2018.11.033

    Article  Google Scholar 

  59. Mirjalili S (2016) SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  60. Yue CT, Price KV, Suganthan PN et al (2020) Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization. https://github.com/P-N-Suganthan/2020-Bound-Constrained-Opt-Benchmark

  61. Long W, Wu T, Jiao J et al (2020) Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of PV model. Eng Appl Artif Intell 89:103457. https://doi.org/10.1016/j.engappai.2019.103457

    Article  Google Scholar 

  62. Barshandeh S, Haghzadeh M (2020) A new hybrid chaotic atom search optimization based on tree-seed algorithm and Levy flight for solving optimization problems. Eng Comput. https://doi.org/10.1007/s00366-020-00994-0

    Article  Google Scholar 

  63. Barshandeh S, Piri F, Sangani SR (2020) HMPA: an innovative hybrid multi-population algorithm based on artificial ecosystem-based and Harris Hawks optimization algorithms for engineering problems. Eng Comput. https://doi.org/10.1007/s00366-020-01120-w

    Article  Google Scholar 

  64. Xu X, Hu Z, Su Q et al (2020) Multivariable grey prediction evolution algorithm: a new metaheuristic. Appl Soft Comput 89:106086. https://doi.org/10.1016/j.asoc.2020.106086

    Article  Google Scholar 

  65. Awad NH, Ali MZ, Mallipeddi R, Suganthan PN (2018) An improved differential evolution algorithm using efficient adapted surrogate model for numerical optimization. Inf Sci (Ny) 451–452:326–347. https://doi.org/10.1016/j.ins.2018.04.024

    Article  MathSciNet  Google Scholar 

  66. Nematollahi AF, Rahiminejad A, Vahidi B (2017) A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization. Appl Soft Comput 59:596–621. https://doi.org/10.1016/j.asoc.2017.06.033

    Article  Google Scholar 

  67. Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33:735–748. https://doi.org/10.1080/03052150108940941

    Article  Google Scholar 

  68. Moosavi SH, Samareh FG, Bardsiri VK (2019) Poor and rich optimization algorithm: a new human-based and multi populations algorithm. Eng Appl Artif Intell 86:165–181. https://doi.org/10.1016/j.engappai.2019.08.025

    Article  Google Scholar 

  69. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  70. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  71. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13:2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  72. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10:629–640. https://doi.org/10.1016/j.asoc.2009.08.031

    Article  Google Scholar 

  73. Yang XS (2010) A new metaheuristic Bat-inspired Algorithm. Stud Comput Intell 284:65–74. https://doi.org/10.1007/978-3-642-12538-6_6

    Article  MATH  Google Scholar 

  74. Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci (Ny) 178:3043–3074. https://doi.org/10.1016/j.ins.2008.02.014

    Article  Google Scholar 

  75. Coello CA, Coello A (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41:113–127. https://doi.org/10.1016/S0166-3615(99)00046-9

    Article  MATH  Google Scholar 

  76. Babalik A, Cinar AC, Kiran MS (2018) A modification of tree-seed algorithm using Deb’s rules for constrained optimization. Appl Soft Comput J 63:289–305. https://doi.org/10.1016/j.asoc.2017.10.013

    Article  Google Scholar 

  77. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: Ray Optimization. Comput Struct 112–113:283–294. https://doi.org/10.1016/j.compstruc.2012.09.003

    Article  Google Scholar 

  78. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186:311–338. https://doi.org/10.1016/S0045-7825(99)00389-8

    Article  MATH  Google Scholar 

  79. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20:89–99. https://doi.org/10.1016/j.engappai.2006.03.003

    Article  Google Scholar 

  80. Long W, Wu T, Liang X, Xu S (2019) Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Syst Appl 123:108–126. https://doi.org/10.1016/j.eswa.2018.11.032

    Article  Google Scholar 

  81. Ewees AA, Abd Elaziz M, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172. https://doi.org/10.1016/j.eswa.2018.06.023

    Article  Google Scholar 

  82. Singh PR, Elaziz MA, Xiong S (2018) Modified Spider Monkey Optimization based on Nelder-Mead method for global optimization. Expert Syst Appl 110:264–289. https://doi.org/10.1016/j.eswa.2018.05.040

    Article  Google Scholar 

  83. Mirjalili S, Lewis A (2016) The Whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  84. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-Verse Optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  85. Mezura-Montes E, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37:443–473

    Article  MathSciNet  Google Scholar 

  86. Huang F, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186:340–356. https://doi.org/10.1016/j.amc.2006.07.105

    Article  MathSciNet  MATH  Google Scholar 

  87. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188:1567–1579. https://doi.org/10.1016/j.amc.2006.11.033

    Article  MathSciNet  MATH  Google Scholar 

  88. Kannan B, Kramer S (1994) An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116:405–411. https://doi.org/10.1115/1.2919393

    Article  Google Scholar 

  89. Long W, Jiao J, Liang X, Tang M (2018) An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng Appl Artif Intell 68:63–80. https://doi.org/10.1016/j.engappai.2017.10.024

    Article  Google Scholar 

  90. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput Struct 169:1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  91. Kaveh A, Talathari S (2010) An improved ant colony optimization for constrained engineering design problems. Eng Comput 27:155–182. https://doi.org/10.1108/02644401011008577

    Article  MATH  Google Scholar 

  92. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51865004 and 52065010), the Natural Science Foundation of Guizhou Province (Qiankehe platform talent [2018] No.5781 and Qiankehe support [2019] No.2010), and the Science and Technology Top Talent Support Program Project of Guizhou Province (Qianjiaohe KY [2018] No.037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisong Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Q., Huang, H., Chen, Q. et al. A modified self-adaptive marine predators algorithm: framework and engineering applications. Engineering with Computers 38, 3269–3294 (2022). https://doi.org/10.1007/s00366-021-01319-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01319-5

Keywords

Navigation