Skip to main content
Log in

Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: a micromechanical approach

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This is the first time the multidirectional-graded porous panel structure modeled numerically using an equivalent single-layer higher-order polynomial model considering the cubic variation of extensional displacement to maintain the necessary stress/strain. The effect of porosity (even and uneven distributions) and variable grading patterns also included achieving the generality. Further, the deflection and stress values, the proposed bidirectional functionally graded (2D-FG) structure, are predicted under the variable loadings, i.e. static and dynamic. Three different types of grading pattern, i.e. power-law, exponential and sigmoid are introduced by varying the material constituents along their principal material axes (longitudinal and transverse). The current numerical solutions (deflection and stress) are obtained through a customized computer code (prepared in MATLAB), under the influences of the static and time-dependent loadings utilizing the higher-order finite element formulations. The dynamic deflections are obtained through the constant acceleration type Newmark’s time-integration steps. The predicted result accuracy is checked by comparing the previously published values in literature and different simulation models (ANSYS and ABAQUS). Besides, the batch input technique is adopted for the simulation material models for both the ANSYS and ABAQUS. Moreover, the python scripting is adopted first time to modify ABAQUS input files for the present 2D graded structure. The influential structure input parameter (power-law exponents, thickness ratio, aspect ratio, end conditions, geometry and curvature ratio) is varied to compute a few final responses (deflection and stress data) of multidirectional FG structure via the derived mathematical model and the final understandings listed the details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

P(X 1, X 3):

An effective material property of FG structure

P c and P m :

Corresponding properties of ceramic and metal, respectively

X 1 and X 3 :

Random points in the length and thickness direction

n x and n z :

Power-law exponents in the length and thickness direction

λ :

Porosity index

c and m :

Ceramic and Metal constituents

\(V_{{f_{{\text{c}}} }}\) and \(V_{{f_{{\text{m}}} }}\) :

Volume fractions of ceramic and metal constituents, respectively

A and b :

Length and width of the FG panel, respectively

h :

Thickness of the FG panel

R x 1 and R x 2 :

Radius of curvature along X1 and X3 axes, respectively

\(X_{{11}} ,\,\,X_{{22}} ,\,\,X_{{33}}\) and \( X_{{11_{0} }} ,\,X_{{22_{0} }} ,X_{{33_{0} }} \) :

Global and mid-plane displacement field along X1, X2 and X3 axes, respectively

\(\psi _{x}\) and \(\psi _{y}\) :

Rotation of transverse normal about the X2, and X1 axes, respectively

\(X_{{11_{0} }}^{*} ,\,\,X_{{22_{0} }}^{*} ,\,\,\psi _{x}^{*} ,\,\,\psi _{y}^{*}\) :

Higher-order terms of Taylor’s series expansion

\(X_{3}^{2}\) and \(X_{3}^{3}\) :

Square and cubic thickness coordinates, respectively

\(\varepsilon _{l}\) :

Linear strain tensor

\(\left[ {T_{l} } \right]_{{5 \times 20}}\) :

Linear thickness coordinate matrix

\(\left\{ {\overline{{\varepsilon _{l} }} } \right\}_{{20 \times 1}}\) :

Mid-plane strain terms matrix

\(\{ \delta _{0} \}\) :

Global displacement field vector

[N]:

Nodal shape function

\( \left\{ {\delta _{{0_{i} }} } \right\} \) :

ith node mid-plane displacement field vector

\(\left\{ {\overline{{\varepsilon _{l} }} } \right\}\) :

Mid-plane strain term

[B]20 × 9 :

The product form of shape functions and the differential operators

\(\left\{ \sigma \right\}\),\(\left\{ \varepsilon \right\}\) and \(\left[ {\overline{Q} } \right]\) :

Stress, strain and reduced stiffness matrix, respectively

\(U\) :

Total strain energy

[D]:

Material property matrix

T e :

Kinetic energy of the FG structure

ρ :

Mass density

\(\left\{ {\dot{\delta }} \right\}\) :

Velocity vector

[m]:

Elemental inertia matrix

W :

Workdone

q :

Applied transverse load

[F]:

Force vector

[M]:

Mass matrix

[K]:

Global stiffness matrix

δ and п :

Variation symbol and total energy functional, respectively

\(\ddot{\delta }_{0}\) :

Acceleration vector

Δt :

Time-step

T :

Total time

α, φ and β 0 to β 7 :

Newmark's integration parameters

\(\left[ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right]\) :

Effective stiffness matrix

\(\left[ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{F} } \right]\) :

Effective load matrix

w :

Actual deflection

\(\overline{w}\) :

Non-dimensional deflection

E c and E m :

Modulus of elasticity of ceramic and metal, respectively

µ c and µ m :

Poisson’s ratio of ceramic and metal, respectively

ρ c and ρ m :

Density of ceramic and metal, respectively

\(\overline{\sigma }\) :

Non-dimensional stress

\(\sigma\) :

Actual stress

τ xy :

Actual shear stress

\(\bar{\tau }\) xy :

Non-dimensional shear stress

References

  1. Chi S-H, Chung Y-L (2006) Mechanical behavior of functionally graded material plates under transverse load—Part I: analysis. Int J Solids Struct 43:3657–3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011

    Article  MATH  Google Scholar 

  2. Wang YQ, Zu JW (2017) Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerosp Sci Technol 69:550–562. https://doi.org/10.1016/j.ast.2017.07.023

    Article  Google Scholar 

  3. Vel SS, Batra RC (2002) Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. AIAA J 40:1421–1433. https://doi.org/10.2514/3.15212

    Article  Google Scholar 

  4. Ferreira AJM, Batra RC, Roque CMC et al (2005) Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Compos Struct 69:449–457. https://doi.org/10.1016/j.compstruct.2004.08.003

    Article  Google Scholar 

  5. Ovesy HR, Ghannadpour SAM (2007) Large deflection finite strip analysis of functionally graded plates under pressure loads. Int J Struct Stab Dyn 7:193–211. https://doi.org/10.1142/S0219455407002241

    Article  Google Scholar 

  6. Lü CF, Chen WQ, Xu RQ, Lim CW (2008) Semi-analytical elasticity solutions for bi-directional functionally graded beams. Int J Solids Struct 45:258–275. https://doi.org/10.1016/j.ijsolstr.2007.07.018

    Article  MATH  Google Scholar 

  7. Aragh BS, Hedayati H (2012) Static response and free vibration of two-dimensional functionally graded metal/ceramic open cylindrical shells under various boundary conditions. Acta Mech 223:309–330. https://doi.org/10.1007/s00707-011-0563-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Mantari JL, Oktem AS, Soares CG (2012) Bending response of functionally graded plates by using a new higher order shear deformation theory. Compos Struct 94:714–723. https://doi.org/10.1016/j.compstruct.2011.09.007

    Article  MATH  Google Scholar 

  9. Sherafat MH, Ovesy HR, Ghannadpour SAM (2013) Buckling analysis of functionally graded plates under mechanical loading using higher order functionally graded strip. Int J Struct Stab Dyn 13:1350033. https://doi.org/10.1142/S0219455413500338

    Article  Google Scholar 

  10. Tornabene F, Viola E (2013) Static analysis of functionally graded doubly-curved shells and panels of revolution. Meccanica 48:901–930. https://doi.org/10.1007/s11012-012-9643-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Zidi M, Tounsi A, Houari MSA et al (2014) Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory. Aerosp Sci Technol 34:24–34. https://doi.org/10.1016/j.ast.2014.02.001

    Article  Google Scholar 

  12. Asadi H, Akbarzadeh AH, Wang Q (2015) Nonlinear thermo-inertial instability of functionally graded shape memory alloy sandwich plates. Compos Struct 120:496–508. https://doi.org/10.1016/j.compstruct.2014.10.027

    Article  Google Scholar 

  13. Asadi H, Akbarzadeh AH, Chen ZT, Aghdam MM (2015) Enhanced thermal stability of functionally graded sandwich cylindrical shells by shape memory alloys. Smart Mater Struct 24:45022. https://doi.org/10.1088/0964-1726/24/4/045022

    Article  Google Scholar 

  14. Kolahchi R, Bidgoli AMM, Heydari MM (2015) Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium. Struct Eng Mech 55:1001–1014. https://doi.org/10.12989/sem.2015.55.5.1001

    Article  Google Scholar 

  15. Ramos IA, Mantari JL, Pagani A, Carrera E (2016) Refined theories based on non-polynomial kinematics for the thermoelastic analysis of functionally graded plates. J Therm Stress 39:835–853. https://doi.org/10.1080/01495739.2016.1189771

    Article  Google Scholar 

  16. Alinaghizadeh F, Shariati M (2016) Geometrically non-linear bending analysis of thick two-directional functionally graded annular sector and rectangular plates with variable thickness resting on non-linear elastic foundation. Compos Part B Eng 86:61–83

    Article  Google Scholar 

  17. Van DT, Nguyen DK, Duc ND et al (2017) Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory. Thin Walled Struct 119:687–699. https://doi.org/10.1016/j.tws.2017.07.022

    Article  Google Scholar 

  18. Pydah A, Sabale A (2017) Static analysis of bi-directional functionally graded curved beams. Compos Struct 160:867–876. https://doi.org/10.1016/j.compstruct.2016.10.120

    Article  Google Scholar 

  19. Huynh TA, Lieu XQ, Lee J (2017) NURBS-based modeling of bidirectional functionally graded Timoshenko beams for free vibration problem. Compos Struct 160:1178–1190. https://doi.org/10.1016/j.compstruct.2016.10.076

    Article  Google Scholar 

  20. Do TV, Bui TQ, Yu TT et al (2017) Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment. J Comput Sci 21:164–181. https://doi.org/10.1016/j.jocs.2017.06.015

    Article  MathSciNet  Google Scholar 

  21. Karamanlı A, Vo TP (2018) Size dependent bending analysis of two directional functionally graded microbeams via a quasi-3D theory and finite element method. Compos Part B Eng 144:171–183

    Article  Google Scholar 

  22. Van VuT, Khosravifard A, Hematiyan MR, Bui TQ (2018) A new refined simple TSDT-based effective meshfree method for analysis of through-thickness FG plates. Appl Math Model 57:514–534. https://doi.org/10.1016/j.apm.2018.01.004

    Article  MathSciNet  MATH  Google Scholar 

  23. Karamanlı A (2018) Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory. Compos Struct 189:127–136. https://doi.org/10.1016/j.compstruct.2018.01.060

    Article  Google Scholar 

  24. Li J, Guan Y, Wang G et al (2018) Meshless modeling of bending behavior of bi-directional functionally graded beam structures. Compos Part B Eng 155:104–111. https://doi.org/10.1016/j.compositesb.2018.08.029

    Article  Google Scholar 

  25. Tlidji Y, Zidour M, Draiche K et al (2019) Vibration analysis of different material distributions of functionally graded microbeam. Struct Eng Mech 69:637–649. https://doi.org/10.12989/sem.2019.69.6.637

    Article  Google Scholar 

  26. Malik M, Das D (2020) Study on free vibration behavior of rotating bidirectional functionally graded nano-beams based on Eringen’s nonlocal theory. Proc Inst Mech Eng Part L J Mater Des Appl. https://doi.org/10.1177/1464420720929375

    Article  Google Scholar 

  27. Vel SS, Batra RC (2003) Three-dimensional analysis of transient thermal stresses in functionally graded plates. Int J Solids Struct 40:7181–7196. https://doi.org/10.1016/S0020-7683(03)00361-5

    Article  MATH  Google Scholar 

  28. Qian LF, Batra RC, Chen LM (2004) Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method. Compos Part B Eng 35:685–697. https://doi.org/10.1016/j.compositesb.2004.02.004

    Article  Google Scholar 

  29. Wu C-P, Lu Y-C (2009) A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates. Compos Struct 90:363–372. https://doi.org/10.1016/j.compstruct.2009.03.022

    Article  Google Scholar 

  30. Goupee AJ, Vel SS (2010) Transient multiscale thermoelastic analysis of functionally graded materials. Compos Struct 92:1372–1390. https://doi.org/10.1016/j.compstruct.2009.10.041

    Article  Google Scholar 

  31. Arani AG, Kolahchi R, Barzoki AAM, Loghman A (2011) Time-dependent thermo-electro-mechanical creep behavior of radially polarized FGPM rotating cylinder. J Solid Mech 3:142–157

    Google Scholar 

  32. Rezaei Mojdehi A, Darvizeh A, Basti A, Rajabi H (2011) Three dimensional static and dynamic analysis of thick functionally graded plates by the meshless local PetrovGalerkin (MLPG) method. Eng Anal Bound Elem 35:1168–1180. https://doi.org/10.1016/j.enganabound.2011.05.011

    Article  MathSciNet  MATH  Google Scholar 

  33. Kiani Y, Shakeri M, Eslami MR (2012) Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace-Fourier transformation. Acta Mech 223:1199–1218. https://doi.org/10.1007/s00707-012-0629-9

    Article  MathSciNet  MATH  Google Scholar 

  34. Kiani Y, Akbarzadeh AH, Chen ZT, Eslami MR (2012) Static and dynamic analysis of an FGM doubly curved panel resting on the Pasternak-type elastic foundation. Compos Struct 94:2474–2484. https://doi.org/10.1016/j.compstruct.2012.02.028

    Article  Google Scholar 

  35. Valizadeh N, Natarajan S, Gonzalez-Estrada OA et al (2013) NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter. Compos Struct 99:309–326. https://doi.org/10.1016/j.compstruct.2012.11.008

    Article  Google Scholar 

  36. Jung WY, Han SC (2014) Transient analysis of FGM and laminated composite structures using a refined 8-node ANS shell element. Compos Part B Eng 56:372–383. https://doi.org/10.1016/j.compositesb.2013.08.044

    Article  Google Scholar 

  37. Şimşek M (2015) Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions. Compos Struct 133:968–978. https://doi.org/10.1016/j.compstruct.2015.08.021

    Article  Google Scholar 

  38. Pagani A, Petrolo M, Carrera E (2019) Dynamic response of laminated and sandwich composite structures via 1D models based on Chebyshev polynomials. J Sandw Struct Mater 21:1428–1444. https://doi.org/10.1177/1099636217715582

    Article  Google Scholar 

  39. Boutaleb S, Benrahou KH, Bakora A et al (2019) Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT. Adv Nano Res 7:191

    Google Scholar 

  40. Nguyen DK, Vu ANT, Le NAT, Pham VN (2020) Dynamic behavior of a bidirectional functionally graded sandwich beam under nonuniform motion of a moving load. Shock Vib. https://doi.org/10.1155/2020/8854076

    Article  Google Scholar 

  41. Lu Y, Chen X (2020) Nonlinear parametric dynamics of bidirectional functionally graded beams. Shock Vib. https://doi.org/10.1155/2020/8840833

    Article  Google Scholar 

  42. De MAG, Cinefra M, Filippi M et al (2021) Validation of FEM models based on Carrera Unified Formulation for the parametric characterization of composite metamaterials. J Sound Vib 498:115979. https://doi.org/10.1016/j.jsv.2021.115979

    Article  Google Scholar 

  43. Carrera E, Azzara R, Daneshkhah E et al (2021) Buckling and post-buckling of anisotropic flat panels subjected to axial and shear in-plane loadings accounting for classical and refined structural and nonlinear theories. Int J Non Linear Mech. https://doi.org/10.1016/j.ijnonlinmec.2021.103716

    Article  Google Scholar 

  44. Carrera E, Pagani A, Giusa D, Augello R (2021) Nonlinear analysis of thin-walled beams with highly deformable sections. Int J Non Linear Mech 128:103613. https://doi.org/10.1016/j.ijnonlinmec.2020.103613

    Article  Google Scholar 

  45. Carrera E, Pagani A, Azzara R, Augello R (2020) Vibration of metallic and composite shells in geometrical nonlinear equilibrium states. Thin Walled Struct 157:107131. https://doi.org/10.1016/j.tws.2020.107131

    Article  Google Scholar 

  46. Fallahi N, Viglietti A, Carrera E et al (2020) effect of fiber orientation path on the buckling, free vibration, and static analyses of variable angle tow panels. Facta Univ Ser Mech Eng 18:165–188. https://doi.org/10.22190/FUME200615026F

    Article  Google Scholar 

  47. Pagani A, Sanchez-Majano AR (2020) Influence of fiber misalignments on buckling performance of variable stiffness composites using layerwise models and random fields. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2020.1771485

    Article  Google Scholar 

  48. Mirjavadi SS, Matin A, Shafiei N et al (2017) Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam. J Therm Stress 40:1201–1214. https://doi.org/10.1080/01495739.2017.1332962

    Article  Google Scholar 

  49. Jouneghani FZ, Dimitri R, Tornabene F (2018) Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings. Compos Part B Eng 152:71–78. https://doi.org/10.1016/j.compositesb.2018.06.023

    Article  Google Scholar 

  50. Daikh AA, Houari MSA, Tounsi A (2019) Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory. Eng Res Express. https://doi.org/10.1088/2631-8695/ab38f9

    Article  Google Scholar 

  51. Li S, Zheng S, Chen D (2020) Porosity-dependent isogeometric analysis of bi-directional functionally graded plates. Thin Walled Struct 156:106999. https://doi.org/10.1016/j.tws.2020.106999

    Article  Google Scholar 

  52. Chen D, Zheng S, Wang Y et al (2020) Nonlinear free vibration analysis of a rotating two-dimensional functionally graded porous micro-beam using isogeometric analysis. Eur J Mech A/Solids 84:104083. https://doi.org/10.1016/j.euromechsol.2020.104083

    Article  MathSciNet  MATH  Google Scholar 

  53. Esmaeilzadeh M, Kadkhodayan M (2019) Dynamic analysis of stiffened bi-directional functionally graded plates with porosities under a moving load by dynamic relaxation method with kinetic damping. Aerosp Sci Technol 93:105333. https://doi.org/10.1016/j.ast.2019.105333

    Article  Google Scholar 

  54. Lei J, He Y, Li Z et al (2019) Postbuckling analysis of bi-directional functionally graded imperfect beams based on a novel third-order shear deformation theory. Compos Struct 209:811–829. https://doi.org/10.1016/j.compstruct.2018.10.106

    Article  Google Scholar 

  55. Kar VR, Panda SK (2016) Nonlinear free vibration of functionally graded doubly curved shear deformable panels using finite element method. J Vib Control 22:1935–1949. https://doi.org/10.1177/1077546314545102

    Article  MathSciNet  Google Scholar 

  56. Szekrényes A (2021) Higher-order semi-layerwise models for doubly curved delaminated composite shells. Arch Appl Mech 91:61–90. https://doi.org/10.1007/s00419-020-01755-7

    Article  Google Scholar 

  57. Szekrényes A (2021) Mechanics of shear and normal deformable doubly-curved delaminated sandwich shells with soft core. Compos Struct 258:113196. https://doi.org/10.1016/j.compstruct.2020.113196

    Article  Google Scholar 

  58. Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  59. Cook RD, Malkus DS, Plesha ME, Witt RJ (2009) Concepts and applications of finite element analysis, 4th edn. Wiley, Singapore

    Google Scholar 

  60. Bathe K-J (1982) Finite element procedure in engineering analysis. Prentice-Hall, New Jersey

    Google Scholar 

  61. Daouadji TH, Tounsi A, Bedia EAA (2013) Analytical solution for bending analysis of functionally graded plates. Sci Iran 20:516–523. https://doi.org/10.1016/j.scient.2013.02.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramteke, P.M., Sharma, N., Choudhary, J. et al. Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: a micromechanical approach. Engineering with Computers 38 (Suppl 4), 3077–3097 (2022). https://doi.org/10.1007/s00366-021-01449-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01449-w

Keywords

Navigation