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Abstract
The present paper deals with cubic B-spline approximation together with �-weighted scheme to obtain numerical solution 
of the time fractional advection diffusion equation using Atangana–Baleanu derivative. To discretize the Atangana–Baleanu 
time derivative containing a non-singular kernel, finite difference scheme is utilized. The cubic basis functions are associ-
ated with spatial discretization. The current discretization scheme used in the present study is unconditionally stable and the 
convergence is of order O(h2 + Δt2) . The proposed scheme is validated through some numerical examples which reveal the 
current scheme is feasible and quite accurate.

Keywords Advection diffusion equation · Cubic B-spline functions · Spline interpolation · Atangana–Baleanu time 
fractional derivative · Finite difference formulation · Stability and convergence

1 Introduction

The calculus of derivatives and integrals of non-integer order 
(that is fractional order) is not a new concept. Its footprints 
of inspiration span three decades and has multidimensional 

patterns of its practical implementations in science and engi-
neering. This connection to other sciences makes fractional 
calculus more vital and indispensable. The fractional calcu-
lus has a long track of exertion in various theories and their 
applications. For example, it has been successfully used in 
viscoplastic and viscoelastic flow [1], transport problems 
[2], control theory [3], tumor development [4], continuum 
mechanics [5], random walks [6] and turbulence [7, 8]. In 
contrary to the conventional integer order counterparts, the 
fractional models which are described by fractional dif-
ferential or integral equations possess more reliable and 
certain characteristics and thus behave more appropriately. 
Consequently, there is a growing need to explore solution 
techniques to study these models. More often, the analytical 
solution of most of the fractional differential equations can-
not be acquired. Therefore, the search for approximate and 
analytical approaches is a subject matter of many lately pub-
lished research papers. In this paper, approximate solution 
of the following time fractional advection diffusion equation 
(TFADE) shall be studied:

(1.1)

�
�w(r, t)

�t�
= Φ

�
2w(r, t)

�r2

− Ψ
�w(r, t)

�r
+ q(r, t), r ∈ [a, b], t ∈ [t0, T],
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with initial condition:

and the boundary conditions:

where � ∈ (0, 1) and q(r, t) is the source term. Φ > 0 and Ψ 
are the diffusion coefficient and average velocity, respec-
tively. �

�

�t�
w(r, t) is the Atangana–Baleanu fractional deriva-

tive (ABFD) based on non-singular kernel. The ABFD 
contains the Mittag–Leffler function that is the corner-
stone of the fractional calculus. Applications of the Atan-
gana–Baleanu operator have been explored in fields as 
diverse as heat transfer [9], chaos theory [10], oscillators 
[11], the hepatitis E virus model [12], cancer chemotherapy 
[13], smoking model [14] and coronavirus [15].

As noted in the literature, significant work has been 
done on numerical and analytical solutions of the TFADE. 
Mardani et al. [16] presented a meshless scheme based 
on the moving least square approximation for solving the 
TFADE with variable coefficients involving Caputo deriva-
tive. Bu et al. [17] proposed a V-cycle multigrid method for 
multi-term TFADEs. Sarboland [18] employed a meshfree 
approach for approximate solution of the time fractional 
partial differential equations based on multiquadric quasi-
interpolation operator. The polynomial spectral collocation 
scheme has been constructed by Tian et al. [19] for solving 
the space fractional advection diffusion equation (FADE). 
Zheng et al. [20] studied the space FADE by means of a 
finite element method. An explicit and an implicit differ-
ence approximations have been developed by Shen et al. [21] 
for the solution of space-time Riesz–Caputo FADE. Azin 
et al. [22] established a hybrid method based on the modified 
Legendre and the Chebyshev cardinal functions for solving 
TFADE. The analytical and numerical investigations of two-
dimensional TFADE have been carried out by Ahmed et al. 
[23] involving memory and a concentrated source.

Mirza and Vieru [24] obtained the fundamental solu-
tions of TFADE by employing the Laplace and Fourier 
transforms. Baleanu et al. [25] presented the variational 
homotopic perturbation and q-homotopic analysis methods 
for solving the fractional advection differential equation 
involving Caputo and Caputo–Fabrizio derivatives. Ana-
lytical solutions for FADE have been obtained by Rubbab 
et al. [26] utilizing the integral transforms technique based 
on time-dependent pulses on the boundary. Rubbab et al. 
[27] developed the finite difference and pseudo-spectral 
collocation schemes and analysed the numerical simula-
tion of FADE with Caputo–Fabrizio operator in cylindri-
cal domains. Korpinar et al. [28] presented the fractional 
homotopy perturbation transform scheme for the time 

(1.2)w(r, t0) = �(r)

(1.3)w(a, t) = �1(t), w(b, t) = �2(t),

fractional Gardner equation involving ABFD with Mit-
tag–Leffler kernel. Owolabi [29, 30] proposed computa-
tional schemes for time fractional Kuramoto–Sivashin-
sky equation and multi-component systems with ABFD, 
respectively. A computational algorithm based on homo-
topic method has been employed by Kumar et al. [31] to 
investigate the fractional vibration equation. Hosseininia 
and Heydari [32] established a meshfree scheme by uti-
lizing the moving least squares shape functions for the 
numerical solution of nonlinear 2D telegraph equation 
with variable-order ABFD. Inc et al. [33] analysed the 
logarithmic-KdV equation with Atangana–Baleanu opera-
tor. Bas and Ozarslan [34] obtained analytical solutions 
of fractional models (population growth, blood alcohol 
model, logistic equation, Newton’s law of cooling) involv-
ing ABFD using Laplace transform. Akgül [35] presented 
a novel technique for investigation of fractional differential 
equations involving the ABFD. Akgül and Modanli [36] 
proposed the Crank–Nicholson difference scheme method 
for the third order fractional partial differential equation 
with ABFD. Attia et al. [37] developed the computational 
approach to find an approximate solution of the TFADE.

In recent years, several authors worked on numerous 
numerical procedures using B-spline interpolation for 
solving fractional differential equations. In particular, due 
to rich geometrical features of the spline functions, they 
are found to be a powerful tool in curve approximation. 
Yaseen et al. [38] presented a computational method for 
the generalized nonlinear time-fractional Klein–Gordon 
equation involving Caputo operator via cubic trigonomet-
ric B-spline functions. Abbas et al. [39] proposed the new 
cubic B-spline approximation based method for numerical 
solution of non-linear third order Korteweg-de Vries equa-
tion. A redefined cubic B-spline functions based scheme 
has been developed by Khalid et al. [40] for numerical 
solution of time fractional Allen–Cahn equation. The 
authors in [41, 42] derived numerical algorithms from 
the extended cubic B-spline functions to investigate the 
computational solutions for the time-fractional fisher and 
telegraph equations. Iqbal et al. [43] investigated numeri-
cal simulation of Kuramoto–Sivashinsky equation using 
new quintic polynomial B-spline functions. Khalid et al. 
[44] presented a computational method using redefined 
extended B-spline approximation for solving TFADE.

This paper presents the numerical scheme for the 
TFADE based on CBS functions. Current proposed method 
used the �-weighted scheme and Atangana–Baleanu opera-
tor. The usage of non-singular kernel operator in B-spline 
methods is novel. The stability and convergence analysis 
of the scheme is also performed to avoid any false result. 
To the best of the author’s knowledge, the proposed algo-
rithm for TFADE is novel and it has not been studied yet.
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The current paper is structured in the following pattern: 
In Sect. 2, the ABFD, Parseval’s identity and basis func-
tions are defined and currently developed scheme is pre-
sented in Sect. 3. Sections 4 and 5 contain the stability of 
algorithm and analysis of convergence, respectively. The 
validity and efficiency of the proposed method is analysed 
in Sect. 6 and finally, the conclusion is given in Sect. 7.

2  Preliminaries

Definition 1 The Atangana–Baleanu fractional derivative 
(ABFD) �

�

�t�
w(r, t) without singular kernel of order � ∈ (0, 1) 

is given by

where R(�) is a normalization function which satisfies 
R(0) = R(1) = 1 . E

� ,�(r) is the Mittag–Leffler function sat-
isfying E

� ,1(r) = E
�
(r) , which is defined as

Definition 2 If f̃ ∈ L2[a, b] , then Parseval’s identity is given 
as [45]:

where f̂ (n) = ∫ b

a
f̃ (r)e2𝜋inrdr for every integer n is its Fourier 

transform.

2.1  Basis functions

T h e  s p a t i a l  d o m a i n  [ a ,   b ]  s u c h  t h a t 
a = r0 < r1 < ⋯ < rN = b , where rk = r0 + kh , k = 0(1)N , 
be divided into N subintervals of equal length h =

b−a

N
.

(2.1)

�
�

�t�
w(r, t) =

R(�)

1 − �

t

∫
0

�

��
w(r, �)E

�

[
−

�

1 − �
(t − �)�

]
d�,

E
� ,�(r) =

∞∑
p=0

rp

Γ(�p + �)
.

(2.2)
∞∑

n=−∞

|f̂ (n)|2 = ∫
b

a

|f̃ (r)|2dr,

Now, we suppose that W(r, t) be the CBS approximation 
for w(r, t) s.t.

where �m
k
(t) , the control points, are to be computed at each 

time level and Ck(r) , the CBS functions, are defined as

The CBS functions retain abundant supply of geometri-
cal properties, such as convex hull property, local support, 
geometric invariability, symmetry, non-negativity and the 
partition of unity [40]. Furthermore, C−1,C0,… ,CN+1 have 
been organized in that manner that they can serve as basis 
for space of all third degree splines. The relations (2.3) and 
(2.4) yield the following approximations:

3  Illustration of the scheme

Let the t ime domain [0,   T]  using the knots 
0 = t0 < t1 < ⋯ < tM = T  ,  w h e r e  tm = mΔt  a n d 
m = 0, 1,… ,M , be divided into M equal subintervals of the 
length Δt = T

M
 . The ABFD involved in (1.1) is discretized 

at t = tm+1 as

(2.3)W(r, t) =

N+1∑
k=−1

�
m
k
(t)Ck(r),

(2.4)

Ck(r)

=
1

6h3

⎧⎪⎪⎨⎪⎪⎩

(r − rk−2)
3, if r ∈ [rk−2, rk−1),

h3 + 3h2(r − rk−1) + 3h(r − rk−1)
2 − 3(r − rk−1)

3, if r ∈ [rk−1, rk),

h3 + 3h2(rk+1 − r) + 3h(rk+1 − r)2 − 3(rk+1 − r)3, if r ∈ [rk, rk+1),

(rk+2 − r)3, if r ∈ [rk+1, rk+2),

0, otherwise.

(2.5)

⎧⎪⎪⎨⎪⎪⎩

(W)m
k
=
�

1

6

�
�
m
k−1

+
�

4

6

�
�
m
k
+
�

1

6

�
�
m
k+1

,

(Wr)
m
k
=
�

1

2h

�
�
m
k+1

+
�
−

1

2h

�
�
m
k−1

,

(Wrr)
m
k
=
�

1

h2

�
�
m
k−1

+
�
−

2

h2

�
�
m
k
+
�

1

h2

�
�
m
k+1

.

(3.1)

𝜕
𝛾

𝜕t𝛾
w(r, tm+1)

=
R(𝛾)

1 − 𝛾

tm+1

∫
0

𝜕

𝜕𝜐
w(r, 𝜐)E

𝛾

[
−

𝛾

1 − 𝛾
(tm+1 − 𝜐)𝛾

]
d𝜐, 0 < 𝛾 < 1,

=
R(𝛾)

1 − 𝛾

m∑
s=0

ts+1

∫
ts

𝜕

𝜕𝜐
w(r, 𝜐)E

𝛾

[
−

𝛾

1 − 𝛾
(tm+1 − 𝜐)𝛾

]
d𝜐.
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Utilizing forward difference formulation, Eq. (3.1) becomes

Hence

where Es = E
� ,2

[
−

�

1−�
(sΔt)�

]
 and ls = (s + 1)Es+1 − sEs . It 

is straightforward to observe that

• ls > 0 and l0 = E1 , s = 1 ∶ 1 ∶ m,
• l0 > l1 > l2 > ⋯ > ls, ls → 0 as s → ∞,
• 

∑m

s=0
(l
s
− l

s+1) + l
m+1 = (E

1
− l

1
) +

∑m−1

s=1
(l
s
− l

s+1)

+l
m
= E

1
.

Moreover, the truncation error �m+1
Δt

 is given by [46]:

�
�

�t�
w(r, t

m+1)

=
R(�)

1 − �

m∑
s=0

w(r, t
s+1) − w(r, t

s
)

Δt

ts+1

∫
ts

E
�

[
−

�

1 − �
(t
m+1 − �)�

]
d� + �

m+1
Δt

=
R(�)

1 − �

m∑
s=0

[
w(r, t

m−s+1) − w(r, t
m−s)

]{
(s + 1)E

� ,2

[
−

�

1 − �
((s + 1)Δt)�

]

−sE
� ,2

[
−

�

1 − �
(sΔt)�

]}
+ �

m+1
Δt

=
R(�)

1 − �

m∑
s=0

[
w(r, t

m−s+1) − w(r, t
m−s)

]

(
(s + 1)E

s+1 − sE
s

)
+ �

m+1
Δt

.

(3.2)

�
�

�t�
w(r, tm+1) =

R(�)

1 − �

m∑
s=0

ls
[
w(r, tm−s+1) − w(r, tm−s)

]
+ �

m+1
Δt

,

�
m+1
Δt

=
R(�)

1 − �

m∑
s=0

ts+1

�
ts

Δt

2

�
2w(r, t

s
)

�t2
E
�

[
−

�

1 − �
(t
m+1 − �)�

]
d�

=
R(�)

1 − �

(Δt)2

2

m∑
s=0

�
2w(r, t

s
)

�t2

{
(m − s + 1)E

� ,2

[
−

�

1 − �
((m − s + 1)Δt)�

]

−(m − s)E
� ,2

[
−

�

1 − �
((m − s)Δt)�

]}

=
R(�)

1 − �

(Δt)2

2

m∑
s=0

�
2w(r, t

s
)

�t2

(
(m − s + 1)E

m−s+1 − (m − s)E
m−s

)

≤ R(�)

1 − �

(Δt)2

2

[
max
0≤t≤tm

�
2w(r, t)

�t2

]
c1,

where c1 is a constant:

where � is a constant.
Using (3.2) and �-weighted scheme then Eq. (1.1) takes the 

following form:

Discretizing (3.4) along spatial direction for � = 1 , we 
acquire

where � =
1−�

R(�)
 , wm

k
= w(rk, tm) and qm+1

k
= q(rk, tm+1).

Using (2.5) in (3.5), we get

where b1 =
1

6
 , b2 =

4

6
 , b3 =

1

2h
 , b4 =

1

h2
 , b5 =

−2

h2
 and 

�
m
k
= �k(t

m).
The system (3.6) consists of N + 1 linear equations in 

N + 3 unknowns. For the unique solution, two additional 
equations can be achieved from the boundary condi-
tions (1.3). Consequently, a matrix system of dimension 
(N + 3) × (N + 3) is obtained:

where

(3.3)|�m+1
Δt

| ≤ �(Δt)2,

(3.4)

R(�)

1 − �

m∑
s=0

ls
[
w(r, tm−s+1) − w(r, tm−s)

]

= �
(
Φwrr(r, tm+1) − Ψwr(r, tm+1)

)
+ (1 − �)

(
Φwrr(r, tm) − Ψwr(r, tm)

)
+ q(r, tm+1).

(3.5)

E1w
m+1
k

− �Φ(wrr)
m+1
k

+ �Ψ(wr)
m+1
k

= E1w
m
k
−

m∑
s=1

ls(w
m−s+1
k

− wm−s
k

) + � qm+1
k

,

(3.6)

(E1b1 − �Φb4 − �Ψb3)�
m+1
k−1

+ (E1b2 − �Φb5)�
m+1
k

+ (E1b1 − �Φb4 + �Ψb3)�
m+1
k+1

= E1(b1�
m
k−1

+ b2�
m
k
+ b1�

m
k+1

)

−

m∑
s=1

ls
[
b1(�

m−s+1
k−1

− �
m−s
k−1

) + b2(�
m−s+1
k

− �
m−s
k

)

+b1(�
m−s+1
k+1

− �
m−s
k+1

)
]
+ � qm+1

k
,

(3.7)A�m+1 = B

(
m−1∑
s=0

(ls − ls+1)�
m−s + lm�

0

)
+ �Jm+1,
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where y1 = E1b1 − �Φb4 − �Ψb3 , y2 = E1b2 − �Φb5 and 
y3 = E1b1 − �Φb4 + �Ψb3 . Before employing (3.7), the ini-
tial vector �0 = [�0

−1
,�0

0
,… ,�0

N+1
]T is achieved by utilizing 

the initial conditions as

In matrix form, the above system of equations can be rep-
resented as

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 b2 b1
y1 y2 y3

y1 y2 y3
⋱ ⋱ ⋱

y1 y2 y3
y1 y2 y3
b1 b2 b1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

b1 b2 b1
b1 b2 b1

⋱ ⋱ ⋱

b1 b2 b1
b1 b2 b1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

�
m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
m
−1

�
m
0

�
m
1

⋮

�
m
N−1

�
m
N

�
m
N+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Jm+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
m+1
1

qm+1
0

qm+1
1

⋮

qm+1
N−1

qm+1
N

�
m+1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.8)

⎧⎪⎨⎪⎩

(Wr)
0
k
= �

�(rk), k = 0,

(W)0
k
= �(rk), k = 0 ∶ 1 ∶ N,

(Wr)
0
k
= �

�(rk), k = N.

(3.9)G�0 = H,

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−b3 0 b3
b1 b2 b1

b1 b2 b1
⋱ ⋱ ⋱

b1 b2 b1
b1 b2 b1
− b3 0 b3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�
�(r0)

�(r0)

�(r1)

⋮

�(rN−1)

�(rN)

�
�(rN)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

Equation (3.9) is easily solvable for �0 by means of a suit-
able numerical algorithm. All the numerical computations 
are performed in Mathematica 12.

4  The stability analysis

During the computational procedure, when the error does 
not amplify, the numerical scheme is presumed to be stable 
[47]. Here, the presented scheme is analysed for stability by 
implementing the Fourier method [41, 44]. For this, suppose 
�
m
k

 and 𝛿m
k

 symbolize the growth factor and its estimation in 
Fourier mode. The error �m

k
 can be presented as

For simplicity, we analyse the stability of the scheme given 
in (3.6) for force-free case ( q = 0 ) only, so that from Eq. 
(3.6), we obtain

From initial and boundary conditions, we can write

and

Define grid function as

The Fourier expansion for �m(r) can be represented as

where

Applying ‖.‖2 norm, we acquire

𝜒
m
k
= 𝛿

m
k
− 𝛿

m
k
, m = 0(1)M, k = 1(1)N − 1.

(4.1)

(E1b1 − �Φb4 − �Ψb3)�
m+1
k−1

+ (E1b2 − �Φb5)�
m+1
k

+ (E1b1 − �Φb4 + �Ψb3)�
m+1
k+1

= E1(b1�
m
k−1

+ b2�
m
k
+ b1�

m
k+1

)

−

m∑
s=1

ls
[
b1(�

m−s+1
k−1

− �
m−s
k−1

) + b2(�
m−s+1
k

− �
m−s
k

)

+b1(�
m−s+1
k+1

− �
m−s
k+1

)
]
.

(4.2)�
0
k
= �(rk), k = 1 ∶ 1 ∶ N

(4.3)�
m
0
= �1(tm), �

m
N
= �2(tm), m = 0 ∶ 1 ∶ M.

(4.4)𝜒
m =

{
𝜒
m
k
, rk −

h

2
< r ≤ rk +

h

2
, k = 1(1)N − 1,

0, a ≤ r ≤ a +
h

2
or b −

h

2
≤ r ≤ b.

(4.5)�
m(r) =

∞∑
n=−∞

�
m(n)e

2�znr

b−a ,

(4.6)
�
m(n) =

1

b − a

b

∫
a

�
m(r)e

−2�znr

b−a dr,

m = 0 ∶ 1 ∶ M and �
m = [�m

1
,�m

2
,… ,�m

N−1
]T .
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By Parseval’s identity (2.2), we have [45]

Hence, we acquire

Assume that (4.1)–(4.3) possess a solution in Fourier form 
as:

where � is a real number and i =
√
−1 . Substituting (4.8) in 

(4.1) and simplifying, we acquire

Utilizing the relation ei�h + e−i�h = 2 cos(�h) and assembling 
the identical terms, we acquire the following equality:

where � = 1 +
12�Φ sin2(�h∕2)+3�Ψkh sin �h

h2E1(3−2 sin
2(�h∕2))

 . Obviously � ≥ 1 and 
E1 > 0.

‖�m‖2 =
����

h

N−1�
k=1

��m
k
�2

=

⎛⎜⎜⎜⎝

a+
h

2

∫
a

��m�2dr

+

N−1�
k=1

rk+
h

2

∫
rk−

h

2

��m�2dr +
b

∫
b−

h

2

��m�2dr
⎞
⎟⎟⎟⎠

1

2

=

⎛
⎜⎜⎝

b

∫
a

��m�2dr
⎞
⎟⎟⎠

1

2

.

b

∫
a

|�m|2dr =
∞∑

n=−∞

|�m(n)|2.

(4.7)‖�m‖2
2
=

∞�
n=−∞

��m(n)�2.

(4.8)�
m
k
= �

mei�kh,

(4.9)

(E1b1 − �Φb4 − �Ψb3)�
m+1e−i�h + (E1b2 − �Φb5)�

m+1

+ (E1b1 − �Φb4 + �Ψb3)�
m+1ei�h

= (E1b1�
me−i�h + E1b2�

m + E1b1�
mei�h)

−

m∑
s=1

ls
[
b1(�

m−s+1e−i�h − �
m−se−i�h)

+ b2(�
m−s+1 − �

m−s)

+b1(�
m−s+1ei�h − �

m−sei�h)
]
.

(4.10)�
m+1 =

1

�

[
�
m −

1

E1

m∑
s=1

ls
(
�
m−s+1 − �

m−s
)]

,

Lemma 4.1 If �m is the solution for equation (4.10), then 
|�m| ≤ |�0|, m = 0, 1, 2,⋯ ,M.

Proof Mathematical induction will be availed. For m = 0 , 
(4.10) gives

Assume that |�m| ≤ |�0| for m = 1, 2,… ,M − 1 , then

  ◻

Theorem 1 The present scheme (3.6) is unconditionally 
stable.

Proof Utilizing Lemma 4.1 and the expression (4.7), we 
acquire

Hence, the proposed numerical method is stable uncondi-
tionally.   ◻

5  The convergence analysis

We follow the procedure employed in [48] to study the con-
vergence of the propounded method. First of all, the follow-
ing theorem is brought forward [49, 50].

Theorem 2 Suppose that w(r, t), q belong to C4[a, b] and 
C2[a, b] , respectively, and Υ = {a = r0, r1,… , rN = b} be 
the partition of [a, b] s.t. rk = a + kh, k = 0, 1,… ,N  . Let 
W̃(r, t) be the unique spline that interpolates the solution 
curve at knots rk ∈ Υ , then there is a constant �k not depend-
ing on h, then for every t ≥ 0 , we acquire

Lemma 5.1 The CBS set {C−1,C0,… ,CN+1} presented in 
(2.4) satisfies the inequality

|�1| = 1

�
|�0| ≤ |�0|, � ≥ 1.

|�m+1| ≤ 1

�
|�m| − 1

�E1

m∑
s=1

ls
(|�m−s+1| − |�m−s|)

≤ 1

�
|�0| − 1

�E1

m∑
s=1

ls
(|�0| − |�0|)

≤ |�0|.

‖�m‖2 ≤ ��0�2, ∀m = 0, 1,… ,M.

(5.1)‖Dk
�
w(r, t) − W̃(r, t)

�‖∞ ≤ 𝜚kh
4−k, k = 0, 1, 2.

(5.2)
N+1∑
k=−1

|Ck(r)| ≤ 5

3
, 0 ≤ r ≤ 1.
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Proof Employing the triangular inequality, we are able to 
write

At any knot rk , we achieve

Moreover, for r ∈ [rk, rk+1] , we get

Thus, for any point rk ≤ r ≤ rk+1 , we obtain

  ◻

Theorem 3 The computational approximation W(r, t) to the 
analytical solution w(r, t) for TFADE (1.1)–(1.3) exists. Fur-
thermore, if q belongs to C2[0, 1] , then

where h is appropriately small and �𝜚 > 0 is free of h. 

Proof We assume that W̃(r, t) =
∑N+1

k=−1
um
k
(t)Ck(r) be the 

approximated spline for W(r,  t). By means of triangular 
inequality, we acquire

With the aid of Theorem 2, we achieve

The collocation conditions of proposed scheme are 
Lw(rk, t) = LW(rk, t) = q(rk, t) , k = 0(1)N . Suppose that

Thus, the difference L(W̃(rk, t) −W(rk, t)) for any time stage 
m can be stated as

||||||

N+1∑
k=−1

Ck(r)

||||||
≤

N+1∑
k=−1

|Ck(r)|.

N+1∑
k=−1

|Ck(r)| = |Ck−1(rk)| + |Ck(rk)| + |Ck+1(rk)|

=
1

6
+

4

6
+

1

6
= 1 <

5

3
.

|Ck(r)| ≤ 4

6
&and |Ck−1(r)| ≤ 1

6
,

|Ck+1(r)| ≤ 4

6
&and |Ck+2(r)| ≤ 1

6
.

N+1∑
k=−1

|Ck(r)| = |Ck−1(r)| + |Ck(r)| + |Ck+1(r)| + |Ck+2(r)| ≤ 5

3
.

(5.3)‖w(r, t) −W(r, t)‖∞ ≤ �̃h2, ∀ t ≥ 0,

‖w(r, t) −W(r, t)‖∞ ≤ ‖w(r, t) − W̃(r, t)‖∞ + ‖W̃(r, t) −W(r, t)‖∞.

(5.4)‖w(r, t) −W(r, t)‖∞ ≤ 𝜚0h
4 + ‖W̃(r, t) −W(r, t)‖∞.

LW̃(r, t) = q̃(rk, t), k = 0(1)N.

The boundary conditions can be described as

where

and

It is obvious from inequality (5.1) that

De f ine  �
m = max{|�m

k
|;0 ≤ k ≤ N} ,  em

k
= |Ωm

k
| and 

em = max{|em
k
|;0 ≤ k ≤ N}.

When m = 0 , Eq. (5.5) becomes

where k = 0 ∶ 1 ∶ N  . With the help of initial condition, 
e0 = 0:

Taking norms of Ω1
k
 , �1

k
 and adequately small mesh spacing 

h, we acquire

We obtain the values of e1
−1

 and e1
N+1

 from the boundary 
conditions:

which implies

(5.5)

(E1b1 − �Φb4 − �Ψb3)Ω
m+1
k−1

+ (E1b2 − �Φb5)Ω
m+1
k

+ (E1b1 − �Φb4 + �Ψb3)Ω
m+1
k+1

= (E1b1Ω
m
k−1

+ E1b2Ω
m
k
+ E1b1Ω

m
k+1

) +
�

h2
�
m+1
k

−

m∑
s=1

ls
[
b1(Ω

m−s+1
k−1

− Ωm−s
k−1

) + b2(Ω
m−s+1
k

− Ωm−s
k

)

+b1(Ω
m−s+1
k+1

− Ωm−s
k+1

)
]
.

b1Ω
m+1
k−1

+ b2Ω
m+1
k

+ b1Ω
m+1
k+1

= 0, k = 0,N,

Ωm
k
= �

m
k
− um

k
, k = −1 ∶ 0 ∶ N + 1

𝜌
m
k
= h2[qm

k
− q̃m

k
], k = 0 ∶ 1 ∶ N.

|𝜌m
k
| = h2|qm

k
− q̃m

k
| ≤ 𝜚h4.

(E1b1 − �Φb4 − �Ψb3)Ω
1
k−1

+ (E1b2 − �Φb5)Ω
1
k
+ (E1b1 − �Φb4 + �Ψb3)Ω

1
k+1

= (E1b1Ω
0
k−1

+ E1b2Ω
0
k
+ E1b1Ω

0
k+1

) +
�

h2
�
1
k
,

(E1b2 − �Φb5)Ω
1
k
= − (E1b1 − �Φb4)(Ω

1
k−1

+ Ω1
k+1

)

+ �Ψb3(Ω
1
k−1

− Ω1
k+1

) +
�

h2
�
1
k
.

e1
k
≤ 3�

E1h
2 + 12�Φ − 3�Ψh

�h4, k = 0 ∶ 1 ∶ N.

e1
−1

≤ 15�

E1h
2 + 12�Φ − 3�Ψh

�h4,

e1
N+1

≤ 15�

E1h
2 + 12�Φ − 3�Ψh

�h4,
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where �1 is not depending on h.
To prove this theorem, mathematical induction on 

m is used. For this, we consider that ef
k
≤ �f h

2 is true for 
f = 1, 2,… ,m and � = max{�f ∶ f = 0, 1,… ,m} , then from 
Eq. (5.5), we obtain

Again, employing the norms on Ωm
k
 and �m

k
 , we acquire

Similarly, we get the values of em+1
−1

 and em+1
N+1

 from the bound-
ary conditions:

Hence, for all m, we acquire

In particular,

Therefore, from Lemma 5.1 and inequality (5.7), we get

Using (5.8), the inequality (5.4) gives

where �̃ = �0h
2 +

5

3
� .   ◻

Theorem 4 The TFADE with initial and boundary condi-
tions is convergent.

(5.6)e1 ≤ �1h
2,

(E1b1 − �Φb4 − �Ψb3)Ω
m+1
k−1

+ (E1b2 − �Φb5)Ω
m+1
k

+ (E1b1 − �Φb4 + �Ψb3)Ω
m+1
k+1

=
[
(l0 − l1)(b1Ω

m
k−1

+ b2Ω
m
k
+ b1Ω

m
k+1

)

+ (l1 − l2)(b1Ω
m−1
k−1

+ b2Ω
m−1
k

+ b1Ω
m−1
k+1

) +⋯

+ (lm−1 − lm)(b1Ω
1
k−1

+ b2Ω
1
k
+ b1Ω

1
k+1

)

+lm(b1Ω
0
k−1

+ b2Ω
0
k
+ b1Ω

0
k+1

)
]
+

�

h2
�
m+1
k

.

em+1
k

≤ 3�h4

E1h
2 + 12�Φ − 3�Ψh

(
� +

m−1∑
s=0

(ls − ls+1)

)
.

em+1
−1

≤ 15�h4

E1h
2 + 12�Φ − 3�Ψh

(
� +

m−1∑
s=0

(ls − ls+1)

)

em+1
N+1

≤ 15�h4

E1h
2 + 12�Φ − 3�Ψh

(
� +

m−1∑
s=0

(ls − ls+1)

)
.

(5.7)em+1 ≤ �h2.

W̃(r, t) −W(r, t) =

N+1∑
k=−1

(
uk(t) − 𝜇k(t)

)
Ck(r).

(5.8)‖W̃(r, t) −W(r, t)‖∞ ≤ 5

3
𝜚h2.

‖w(r, t) −W(r, t)‖∞ ≤ �0h
4 +

5

3
�h2 = �̃h2,

Proof Consider w(r,  t) and W(r,  t) be the solutions for 
TFADE analytically and numerically, respectively. There-
fore, relation (3.3) and the above theorem validate that there 
are arbitrary constants �̃  and � , such that

Hence, the presented scheme is second order convergent in 
spatial and time directions.   ◻

6  Illustration of numerical examples 
and discussion

In this section, numerical outcomes are reported to check the 
accuracy of the scheme through the error norms L2(z) , L∞(z) 
as

and the convergence order [46] as

All examples are solved by considering normalization func-
tion R(�) = 1.

Example 6.1 Consider the TFADE [46]

with initial condition:

and boundary conditions:

where q(r, t) = 2

(
R(�)

1−�

)
r(r − 1)t2E

� ,3

[
−�

1−�
t�
]
− 2t2 + (2r − 1)t2.

The exact solution is w(r, t) = r(r − 1)t2 . Tables 1 and 2 
show the numerical outcomes and absolute errors of Exam-
ple 6.1 for different choices of � setting N = 80, 10, 50 , 
Δt = 0.001 and t = 1 . For different choices of � , error norms 
are reported in Table 3 at various time stages. A Comparison 
of error norm and convergence order with those obtained in 
[46] is given in Tables 4 and 5 along temporal and spatial 

‖w(r, t) −W(r, t)‖∞ ≤ �̃h2 + �(Δt)2.

L2(z) =‖w(rk, t) −W(rk, t)‖2

=

����
h

N�
r=0

�w(rk, t) −W(rk, t)�2,

L∞(z) =‖w(rk, t) −W(rk, t)‖∞
= max

0≤k≤N �w(rk, t) −W(rk, t)�

log

(
L∞(z)

L∞(z + 1)

)/
log

(
Q(z + 1)

Q(z)

)
.

�
�w(r, t)

�t�
=
�
2w(r, t)

�r2
−

�w(r, t)

�r

+ q(r, t), r ∈ [0, 1], t ∈ [0, 1],

w(r, 0) = 0

w(0, t) = 0, w(1, t) = 0,
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directions. In Fig. 1, we can observe that close agreement 
between numerical results of the presented method and exact 
solutions at different time stages with Δt = 0.001 . A 3-D 
plot of exact solution and computational results is illustrated 
in Fig. 2 by setting N = 1000 , Δt = 0.001 , � = 0.4 , t = 1 
and r ∈ [0, 1] . In Fig. 3, the 2D and 3D error profiles are 
displayed at t = 1 . Tables and figures represent that the pro-
posed method is compatible with stated exact solution.

Example 6.2 Consider the TFADE [46]

with initial condition:

�
�w(r, t)

�t�
=
�
2w(r, t)

�r2
−

�w(r, t)

�r

+ q(r, t), r ∈ [0, 1], t ∈ [0, 1],

(a) (b)

(c) (d)

(e) (f)

Fig. 1  Exact and numerical solutions for Example 6.1 at different time stages with Δt = 0.001
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Fig. 2  3D Exact and approximate solutions for Example 6.1, when N = 1000 , t = 1 , � = 0.4 , Δt = 0.001 and r ∈ [0, 1]

Fig. 3  2D and 3D Error profiles for Example 6.1, when N = 1000 , t = 1 , � = 0.4 , Δt = 0.001 and r ∈ [0, 1]

Table 1  Absolute errors for 
various choices of � , where 
Δt = 0.001 and N = 80 of 
Example 6.1 at t = 1

r Exact solution Approximate solution Error

� = 0.2 � = 0.7 � = 0.2 � = 0.7

0.1 −0.09 −0.09000000023560967 −0.09000000289464635 2.35610 × 10
−10

2.89465 × 10
−9

0.2 −0.16 −0.16000000046387822 −0.16000000570048642 4.63878 × 10
−10

5.70049 × 10
−9

0.3 −0.21 −0.21000000065880656 −0.21000000809766445 6.58807 × 10
−10

8.09766 × 10
−9

0.4 −0.24 −0.24000000079915515 −0.2400000098246749 7.99155 × 10
−10

9.82467 × 10
−9

0.5 −0.25 −0.2500000008687607 −0.2500000106821742 8.68761 × 10
−10

1.06822 × 10
−8

0.6 −0.24 −0.24000000085690387 −0.2400000105377483 8.56904 × 10
−10

1.05377 × 10
−8

0.7 −0.21 −0.21000000075876923 −0.21000000933177032 7.58769 × 10
−10

9.33177 × 10
−9

0.8 −0.16 −0.16000000057601604 −0.16000000708451972 5.76016 × 10
−10

7.08452 × 10
−9

0.9 −0.09 −0.09000000031747607 −0.09000000390475865 3.17476 × 10
−10

3.90476 × 10
−9
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Table 2  Absolute errors for Example 6.1 at t = 1 and Δt = 0.001

r Exact solution Approximate solution Error

� = 0.1,N = 10 � = 0.7,N = 50 � = 0.1,N = 10 � = 0.7,N = 50

0.1 −0.09 −0.09000000007298412 −0.0900000028941835 7.29841 × 10
−11

2.89418 × 10
−9

0.2 −0.16 −0.16000000014375576 −0.16000000569960401 1.43756 × 10
−10

5.69960 × 10
−9

0.3 −0.21 −0.2100000002042015 −0.21000000809643382 2.04202 × 10
−10

8.09643 × 10
−9

0.4 −0.24 −0.2400000002477085 −0.2400000098231799 2.47709 × 10
−10

9.82318 × 10
−9

0.5 −0.25 −0.25000000026925223 −0.25000001068051464 2.69252 × 10
−10

1.06805 × 10
−8

0.6 −0.24 −0.24000000026551133 −0.24000001053604475 2.65511 × 10
−10

1.05360 × 10
−8

0.7 −0.21 −0.21000000023501217 −0.21000000933017113 2.35012 × 10
−10

9.33017 × 10
−9

0.8 −0.16 −0.1600000001783083 −0.16000000708320752 1.78308 × 10
−10

7.08321 × 10
−9

0.9 −0.09 −0.09000000009819983 −0.09000000390396098 9.81998 × 10
−11

3.90396 × 10
−9

Table 3  Error norms for various choices of � , where Δt = 0.0005 , N = 32 and r ∈ [0, 1] of Example 6.1

t L∞(z) L
2
(z)

� = 0.1 � = 0.5 � = 0.9 � = 0.1 � = 0.5 � = 0.9

0.2 5.56352 × 10
−11

6.58804 × 10
−10

6.81249 × 10
−9

3.94425 × 10
−11

4.67133 × 10
−10

4.83419 × 10
−9

0.4 6.20123 × 10
−11

8.40756 × 10
−10

8.82748 × 10
−9 4.39634×10−11 5.96105 × 10

−10
6.25935 × 10

−9

0.6 6.59160 × 10
−11

9.56088 × 10
−10

9.62124 × 10
−9 4.67308×10−11 6.77845 × 10

−10
6.82017 × 10

−9

0.8 6.87652 × 10
−11

1.04025 × 10
−9

1.03354 × 10
−8

4.87506 × 10
−11

7.37492 × 10
−10

7.32440 × 10
−9

1.0 7.10227 × 10
−11

1.10611 × 10
−9

1.04419 × 10
−8

5.03511 × 10
−11

7.84161 × 10
−10

7.40045 × 10
−9

Table 4  Comparison of error 
norm for Example 6.1 with 
different values of Δt = 1

m
 when 

t = 1 and fixed h =
1

1000

� m FDM [46] Proposed method

L∞(z) Order L∞(z) L
2
(z) Order

0.2 10 6.29089 × 10
−6 ⋯ 6.29088 × 10

−6
4.45944 × 10

−6 ⋯

20 1.69949 × 10
−6 1.888166062 1.69948 × 10

−6
1.20471 × 10

−6 1.888171257
40 4.53017 × 10

−7 1.907459519 4.53019 × 10
−7

3.21132 × 10
−7 1.907449346

80 1.19488 × 10
−7 1.922695207 1.19483 × 10

−7
8.46978 × 10

−8 1.922762688
160 3.12514 × 10

−8 1.934880530 3.12511 × 10
−8

2.21536 × 10
−8 1.934828974

0.3 10 1.34627 × 10
−5 ⋯ 1.34627 × 10

−5
9.54335 × 10

−6 ⋯

20 3.58496 × 10
−6 1.908944525 3.58495 × 10

−6
2.54127 × 10

−6 1.908943810
40 9.41934 × 10

−7 1.928258301 9.41931 × 10
−7

6.67707 × 10
−7 1.928261075

80 2.44961 × 10
−7 1.943071838 2.44959 × 10

−7
1.73645 × 10

−7 1.943079673
160 6.31993 × 10

−8 1.954573069 6.31974 × 10
−8

4.47988 × 10
−8 1.954605365

0.4 10 2.38602 × 10
−5 ⋯ 2.38601 × 10

−5
1.69138 × 10

−5 ⋯

20 6.27827 × 10
−6 1.926164892 6.27826 × 10

−6
4.45047 × 10

−6 1.926163821
40 1.63031 × 10

−6 1.945222205 1.630298 × 10
−6

1.15567 × 10
−6 1.945230090

80 4.19281 × 10
−7 1.959154613 4.19280 × 10

−7
2.97214 × 10

−7 1.959148810
160 1.07066 × 10

−7 1.969412862 1.07068 × 10
−7

7.58968 × 10
−8 1.969391952

0.5 10 3.90135 × 10
−5 ⋯ 3.90134 × 10

−5
2.76554 × 10

−5 ⋯

20 1.01634 × 10
−5 1.940583396 1.01634 × 10

−5
7.20451 × 10

−6 1.940583037
40 2.61414 × 10

−6 1.958980182 2.61414 × 10
−6

1.85307 × 10
−6 1.958977081

80 6.66564 × 10
−7 1.971522766 6.66564 × 10

−7
4.72503 × 10

−7 1.971524280
160 1.68953 × 10

−7 1.980125119 1.68954 × 10
−7

1.19766 × 10
−7 1.980113110
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Table 5  Comparison of error 
norm for Example 6.1 with 
different values of Δt = 1

m
 and 

h =
1

n
 when t = 1

� m = n FDM [46] Proposed method

L∞(z) Order L∞(z) L
2
(z) Order

0.2 10 6.30203 × 10
−6 ⋯ 6.21118 × 10

−6
4.42953 × 10

−6 ⋯

20 1.70133 × 10
−6 1.889155874 1.69517 × 10

−6
1.2027 × 10

−6 1.873440564
40 4.52969 × 10

−7 1.909176733 4.52558 × 10
−7

3.20997 × 10
−7 1.905251532

80 1.19502 × 10
−7 1.922377832 1.19475 × 10

−7
8.46927 × 10

−8 1.921396468
160 3.12501 × 10

−8 1.935099332 3.12486 × 10
−8

2.21514 × 10
−8 1.934844164

0.3 10 1.34866 × 10
−5 ⋯ 1.32921 × 10

−5
9.47935 × 10

−6 ⋯

20 3.58884 × 10
−6 1.909933591 3.57584 × 10

−6
2.53702 × 10

−6 1.894216888
40 9.41832 × 10

−7 1.929977781 9.40978 × 10
−7

6.6743 × 10
−7 1.926051621

80 2.44988 × 10
−7 1.942760823 2.44932 × 10

−7
1.73626 × 10

−7 1.941778797
160 6.31982 × 10

−8 1.954754361 6.31947 × 10
−8

4.47971 × 10
−8 1.954507116

0.4 10 2.39024 × 10
−5 ⋯ 2.35577 × 10

−5
1.68003 × 10

−5 ⋯

20 6.28509 × 10
−6 1.927152757 6.26231 × 10

−6
4.44303 × 10

−6 1.911433379
40 1.63013 × 10

−6 1.946946105 1.62865 × 10
−6

1.15519 × 10
−6 1.943018626

80 4.19330 × 10
−7 1.958828865 4.19235 × 10

−7
2.97183 × 10

−7 1.957846640
160 1.07068 × 10

−7 1.969561794 1.07062 × 10
−7

7.58931 × 10
−8 1.969316007

0.5 10 3.90827 × 10
−5 ⋯ 3.85187 × 10

−5
2.74697 × 10

−5 ⋯

20 1.01745 × 10
−5 1.941570692 1.01376 × 10

−5
7.19245 × 10

−6 1.925839438
40 2.61386 × 10

−6 1.960707916 2.61148 × 10
−6

1.8523 × 10
−6 1.956776747

80 6.66644 × 10
−7 1.971192408 6.66492 × 10

−7
4.72454 × 10

−7 1.970209326
160 1.68955 × 10

−7 1.980273364 1.68946 × 10
−7

1.1976 × 10
−7 1.980028239

Table 6  Absolute error for 
Example 6.2 at t = 1 , � = 0.2 , 
Δt = 0.0125 and N = 500

r Exact solution Approximate solution Error

0.1 0.30901699437494745 0.30901702338700715 2.9012059699073944 × 10
−8

0.2 0.5877852522924731 0.5877853098089763 5.751650311580647 × 10
−8

0.3 0.8090169943749475 0.8090170766181584 8.224321090821718 × 10
−8

0.4 0.9510565162951535 0.9510566165465532 1.0025139962621665 × 10
−7

0.5 1 1.00000010921341 1.0921341009328955 × 10
−7

0.6 0.9510565162951535 0.9510566239287926 1.0763363911259205 × 10
−7

0.7 0.8090169943749475 0.8090170893593546 9.498440711741551 × 10
−8

0.8 0.5877852522924731 0.5877853240383313 7.174585814340162 × 10
−8

0.9 0.30901699437494745 0.3090170337198961 3.9344948632447085 × 10
−8

Table 7  Absolute error for 
Example 6.2 at t = 1 , � = 0.4 , 
Δt = 0.05 and N = 70

r Exact solution Approximate solution Error

0.1 0.30901699437494745 0.3090141613478385 2.8330271089616055 × 10
−6

0.2 0.5877852522924731 0.587779638352816 5.613939657145295 × 10
−6

0.3 0.8090169943749475 0.8090089728017736 8.021573173810914 × 10
−6

0.4 0.9510565162951535 0.9510467467983879 9.769496765676955 × 10
−6

0.5 1 0.999989367097764 1.0632902236018538 × 10
−5

0.6 0.9510565162951535 0.9510460470148395 1.0469280314007179 × 10
−5

0.7 0.8090169943749475 0.8090077635576107 9.230817336725039 × 10
−6

0.8 0.5877852522924731 0.5877782850448111 6.967247662026388 × 10
−6

0.9 0.30901699437494745 0.30901317555384294 3.818821104506487 × 10
−6
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and boundary conditions:

where q(r, t) = 120

(
R(�)

1−�

)
t5 sin(�r)E

� ,6

[
−�

1−�
t�
]
+ �t5(� sin

(�r) + cos(�r)).

The exact solution is w(r, t) = t5 sin(�r) . The absolute 
errors for Example 6.2 at numerous values of r setting 
Δt = 0.0125, 0.05 , N = 500, 70 , � = 0.2, 0.4 and t = 1 are 
tabulated in Tables 6 and 7. Tables 8 and 9 display the 
error norms for different values of � subject to N = 85, 285 , 
Δt = 0.01 and r ∈ [0, 1] at various time stages. Comparison 
of convergence order and errors are displayed in Tables 10 
and 11 in temporal and spatial grids, respectively. It is 
found that the proposed scheme shows better efficiency and 
accuracy as compared to the scheme proposed in [46]. Fig-
ure 4 illustrates the behavior of computational results and 
exact values at different time stages. In Fig. 5, 3-D graphs 

w(r, 0) = 0

w(0, t) = 0, w(1, t) = 0,

of numerical outcomes and analytical solutions depict the 
accuracy of current scheme. Figure 6 shows the 2D and 3D 
error profiles, which exhibit exactness of the method.

7  Conclusion

In current paper, an efficient solution of TFADE involving 
Atangana–Baleanu time derivative has attained through 
numerical scheme based on CBS functions. The standard 
finite difference formulation has been used to approxi-
mate the Atangana–Baleanu time fractional derivative, 
while interpolation of solution curve in spatial direction 
is obtained through CBS functions. The method proposed 
in current study is novel and provides reasonable accuracy 
when compared to those already developed in literature. The 
method is unconditionally stable along with second order 
spatial and temporal convergence. The implementation of 
the current algorithm on numerical examples reveal this 
method to be more efficient, simple and admissible.

Table 8  Error norms for various 
choices of � , where Δt = 0.01 , 
N = 85 and r ∈ [0, 1] of 
Example 6.2

t L∞(z) L
2
(z)

� = 0.2 � = 0.5 � = 0.8 � = 0.2 � = 0.5 � = 0.8

0.2 2.24118 × 10
−8

7.09333 × 10
−9

1.06536 × 10
−7

1.5824 × 10
−8

5.00854 × 10
−9

7.52367 × 10
−8

0.4 9.37425 × 10
−7

5.75672 × 10
−7

7.75183 × 10
−7

6.61875 × 10
−7

4.06481 × 10
−7

5.47406 × 10
−7

0.6 7.50231 × 10
−6

5.91274 × 10
−6

1.75069 × 10
−7

5.29705 × 10
−6

4.17495 × 10
−6

1.23401 × 10
−7

0.8 3.22589 × 10
−5

2.76668 × 10
−5

1.01196 × 10
−5

2.27765 × 10
−5

1.95352 × 10
−5

7.14637 × 10
−6

1.0 9.94523 × 10
−5

8.89304 × 10
−5

4.92972 × 10
−5

7.02186 × 10
−5

6.27927 × 10
−5

3.48118 × 10
−5

Table 9  Error norms for 
Example 6.2 when Δt = 0.01 , 
N = 285 and r ∈ [0, 1]

t L∞(z) L
2
(z)

� = 0.1 � = 0.7 � = 0.1 � = 0.7

0.2 4.29501 × 10
−10

7.56327 × 10
−8

3.03202 × 10
−10

5.34027 × 10
−8

0.4 6.05272 × 10
−8

8.49359 × 10
−7

4.27287 × 10
−8

5.99692 × 10
−7

0.6 5.84265 × 10
−7

3.24254 × 10
−6

4.12457 × 10
−7

2.28934 × 10
−6

0.8 2.66452 × 10
−6

7.83032 × 10
−6

1.88100 × 10
−6

5.52835 × 10
−6

1.0 8.43719 × 10
−6

1.43745 × 10
−5

5.95616 × 10
−6

1.01484 × 10
−5
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Table 11  Comparison of error 
norm for Example 6.2 with 
different values of h =

1

n
 and 

Δt =
1

500
 when t = 1

� n FDM [46] Proposed method

L∞(z) Order L∞(z) L
2
(z) Order

0.2 10 0.007622189 ⋯ 0.00726005 0.0051572 ⋯

20 0.001915395 1.992563186 0.00182915 0.00129262 1.988806934
40 0.000478550 2.000901471 0.000457745 0.000323317 1.998557412
80 0.000119693 1.999324187 0.000114447 0.000080794 1.999869299
160 2.99395 × 10

−5 1.999223018 2.85445 × 10
−5

2.01511 × 10
−5 2.003389455

0.3 10 0.007569951 ⋯ 0.00721124 0.00512245 ⋯

20 0.001902765 1.992186298 0.00181667 0.00128383 1.988951007
40 0.000475413 2.000842977 0.000454567 0.000321073 1.998729270
80 0.000118918 1.999219732 0.000113592 8.01918 × 10

−5 2.000630037
160 2.97599 × 10

−5 1.998523576 2.82727 × 10
−5

1.99595 × 10
−5 2.006381843

0.4 10 0.007494668 ⋯ 0.00714089 0.00507238 ⋯

20 0.001884556 1.991639999 0.001798697 0.00127117 1.989151495
40 0.000470889 2.000766894 0.000450004 0.000317851 1.998943997
80 0.000117795 1.999103804 0.000112376 7.93348 × 10

−5 2.001597147
160 2.94972 × 10

−5 1.997633680 2.78965 × 10
−5

1.96942 × 10
−5 2.010185304

0.5 10 0.007390490 ⋯ 0.00704352 0.00500306 ⋯

20 0.001859347 1.990873841 0.00177383 0.00125365 1.989430161
40 0.000464623 2.000662501 0.000443691 0.000313394 1.999237222
80 0.000116240 1.998949703 0.000110698 7.81519 × 10

−5 2.002925008
160 2.91333 × 10

−5 1.996370865 2.73802 × 10
−5

1.93302 × 10
−5 2.015425048

Table 10  Comparison of error 
norm for Example 6.2 with 
different values of Δt = 1

m
 when 

t = 1 and fixed h =
1

1000

� m FDM [46] Proposed method

L∞(z) Order L∞(z) L
2
(z) Order

0.2 10 0.000139981 ⋯ 0.000138503 9.7775 × 10
−5 ⋯

20 4.08956 × 10
−5 1.775214940 3.9418 × 10

−5
2.78267 × 10

−5 1.812994737
40 1.19251 × 10

−5 1.777941708 1.04467 × 10
−5

7.37474 × 10
−6 1.915806402

80 3.79060 × 10
−6 1.653504636 2.30918 × 10

−6
1.63014 × 10

−6 2.177596014
160 1.56917 × 10

−6 1.272422075 8.14794 × 10
−8

5.75207 × 10
−8 4.824801237

0.3 10 0.000287302 ⋯ 0.000285834 0.000201783 ⋯

20 8.16643 × 10
−5 1.814789261 8.01969 × 10

−5
5.66146 × 10

−5 1.833557126
40 2.28252 × 10

−5 1.839076189 2.13575 × 10
−5

1.50772 × 10
−5 1.908801582

80 6.63756 × 10
−6 1.781904211 5.16816 × 10

−6
3.64844 × 10

−6 2.047022699
160 2.29644 × 10

−6 1.531255342 8.22282 × 10
−7

5.80484 × 10
−7 2.651945595

0.4 10 0.000493326 ⋯ 0.000491872 0.000347239 ⋯

20 0.000137198 1.846284896 0.000135745 9.58295 × 10
−5 1.857385833

40 3.73104 × 10
−5 1.878605287 3.58575 × 10

−5
2.53137 × 10

−5 1.920548663
80 1.03383 × 10

−5 1.851583641 8.88435 × 10
−6

6.27193 × 10
−6 2.012938781

160 3.22472 × 10
−6 1.680750781 1.76728 × 10

−6
1.24761 × 10

−6 2.329737231
0.5 10 0.00078925 ⋯ 0.000787815 0.00055617 ⋯

20 0.00021535 1.873801387 0.000213917 0.000151018 1.880808105
40 5.73409 × 10

−5 1.909044348 5.59084 × 10
−5

3.94693 × 10
−5 1.935913970

80 1.53859 × 10
−5 1.897956775 1.39527 × 10

−5
9.8501 × 10

−6 2.002522561
160 4.47913 × 10

−6 1.780318285 3.04332 × 10
−6

2.14848 × 10
−6 2.196821079
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(a) (b)

(c) (d)

(e) (f)

Fig. 4  Exact and numerical solutions for Example 6.2 at different time stages
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