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Abstract
Reliable evaluation of mechanical response in a porous solid might be challenging without any simplified assumptions. 
Peridynamics (PD) perform very well on a medium including pores owing to its definition, which is valid for entire domain 
regardless of any existed discontinuities. Accordingly, porosity is defined by randomly removing the PD interactions between 
the material points. As wave propagation in a solid body can be regarded as an indication of the material properties, wave 
propagation in porous media under an impact loading is studied first and average wave speeds are compared with the avail-
able reference results. A good agreement between the present and the reference results is achieved. Then, micro-cracks are 
introduced into porous media to investigate their influence on the elastic wave propagation. The micro-cracks are considered 
in both random and regular patterns by varying the number of cracks and their orientation. As the porosity ratio increases, 
it is observed that wave propagation speed drops considerably as expected. As for the cases with micro-cracks, the average 
wave speeds are not influenced significantly in random micro-crack configurations, while regular micro-cracks play a notice-
able role in absorbing wave propagation depending on their orientation as well as the number of crack arrays in y-direction.
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Introduction
Engineering materials usually include a certain level of 

porosity, which is ignored most of the time in performing 
mechanical simulations due to their negligible size and den-
sity. However, it is unavoidable to consider such pores in 
certain circumstances so that these voids/pores may have 

prominent effects on the mechanical performance of the 
structures in macro scale [1, 2]. What is more, the porous 
micro-structures are desirable in special applications, e.g., 
wastewater treatment systems utilize porous filters to remove 
pollutants and extract usable water.
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It is of great importance to characterize the mechanical 
behaviour of porous structures in wastewater treatment sys-
tems as they may be subjected to high working pressures up 
to 10 bars in an ultra-filtration process [3]. Wang et al. [4] 
presented an extended literature report on the evaluation of 
mechanical properties for desalination and wastewater treat-
ment membranes. de Wit et al. [5] discussed the candidate 
methods, namely, three-point bending, four-point bending 
and diametrical compression tests to assess the mechani-
cal strength of ceramic hollow fibre membranes. The same 
authors also examined the impact of the production methods 
on the mechanical performance of alumina porous hollow 
fibre membranes [6]. Lee et al. [7] investigated potential use 
of alumina hollow fibre membranes for wastewater treatment 
in terms of different micro-structures, which may affect the 
permeability and mechanical performance of membranes.

Aside to the specific works addressing the mechanical 
response of porous membrane materials, the simplified 
formulations can be adopted for estimating the porosity 
dependence of mechanical properties of solids in general. 
Several decades ago, elastic constants of solids contain-
ing spherical voids for low porosity ratios were estimated 
by Mackenzie [8], while the effective material properties 
of solids with high porosity were predicted by Gibson and 
Ashby formulae [9]. Coble and Kingery [10] carried out 
extensive experimental works to establish the relationship 
between porosity, temperature and physical properties, 
i.e., strength, elastic modulus, rigidity and coefficient of 
thermal expansion in porous ceramics. Brown et al. [11] 
estimated the mechanical strength of brittle porous materi-
als by a theoretical approach by taking both pore density 
and geometry into account. Walsh et al. [12] reported the 
impacts of porosity on the dynamic response of the glass 
under compressive loads. Phani and Niyogi [13] proposed 
a semi-empirical formulation to predict the elastic modulus 
of porous brittle solids, which was tested up to porosity level 
of 0.5. Boccaccini et al. [14] estimated effective Young’s 
modulus of porous media by volume fraction ratio of closed 
porosity and their micro-structural characteristics, such as 
shape and orientation. The predicted results were compared 
with the experimental measurements for metals, ceramics 
and glasses. Ji and Gu [15] estimated mechanical proper-
ties of porous media by taking them as a special case of 
two-phase composites, in which pores are dispersed within a 
solid body. Accordingly, they employed generalized mixture 
rule and compared the performance of their estimations with 
other approximate methods. Recently, Manoylov et al. [16] 
improved the porosity–elastic modulus relations for isolated 
spherical holes proposed by Vavakin and Salganik [17, 18]. 
Furthermore, these expressions were modified for merged 
and open pores.

The above mentioned works have mostly employed 
theoretical or empirical approximations to construct a 

relationship between the mechanical and physical proper-
ties of porous solids instead of direct simulation. However, 
peridynamics (PD) [19] offer a great potential to assess the 
mechanical response of porous bodies. In this study, we 
adopt Ordinary State-Based (OSB)—PD [20] reformulated 
by Madenci and Oterkus [21]. Unlike the bond-based PD 
[22], the OSB-PD formulation eliminates the restrictions 
on Poisson’s ratio of the material by defining the force 
state of a material point (particle) in terms of deformation 
states of other material points within the neighbourhood, 
so called horizon, in addition to the extension of the PD 
bonds between two particles. In the recent decade, there has 
been a remarkable progress in the PD and relevant nonlocal 
methods. Ren et al. [23] proposed dual horizon PD, which 
eliminates the ghost force effect due to the variable horizon 
sizes. Dual horizon PD naturally allows to handle complex 
problems with relatively high computational efficiency by 
means of reducing the horizon sizes as well as the parti-
cle distance in desired locations, e.g., crack tip area, while 
keeping the particle distance large in other parts of a model. 
Madenci et al. [24] proposed the PD differential operator 
to obtain partial derivatives in the form of nonlocal inte-
grations. Likewise, a nonlocal operator method for solving 
partial differential equations was proposed by Rabczuk and 
his colleagues [25, 26]. Ren et al. [27] later presented a 
higher order nonlocal operator method, which brings addi-
tional advantages to the original form of nonlocal operator 
method and it can be adopted to obtain partial derivatives 
of higher orders.

The wave propagation in a solid medium can be assumed 
as an indication of the material stiffness [12]. The appar-
ent material properties of a porous medium is estimated by 
simplified approaches most of the time [11, 13–15]. These 
approaches rely on certain assumptions and simplifications, 
and basically do not take into account the variability of the 
porosity ratios and randomness of the micro-structure. PD 
is capable of representing the complicated micro-structures 
by means of the pre-damage [28–30]; we thus aim to capture 
dynamic wave propagation in porous media, which allows to 
characterize material properties in a more reliable manner 
by considering non-uniform and random micro-structure. 
In this respect, we utilize the assets of OSB-PD formulation 
to model porosity as well as the micro-cracks in a porous 
medium to assess their influence on the wave propagation 
speed for the first time in the literature. The ultimate motiva-
tion of the present work is to establish a numerical frame-
work to evaluate the mechanical response of porous solids 
that can be used as water treatment membranes.

Instead of modelling every single detail of pores, these 
pores can be imposed by means of the pre-defined dam-
age into the body within the PD perspective [28, 29]. Chen 
and Bobaru [28] proposed concentration dependent damage 
technique to model pitting corrosions in the PD framework. 
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Then, this technique was implemented for porosity model-
ling by intermediate homogenization algorithm [29]. Chen 
et al. [29] employed the bond-based PD with conical micro-
modulus function to simulate elastic wave propagation in 
porous media under an impact load. Apparent modulus 
of the material was then predicted by means of the wave 
propagation speed. Furthermore, crack propagation simula-
tion in porous media was also performed by Ref. [29]. De 
Meo et al. [31, 32] developed a PD model, based on the 
concentration dependent damage method [28], to simulate 
the crack onset and propagation from pitting corrosions, 
and the model was implemented in a commercial software 
framework. Oterkus et al. [33] developed a coupled model 
for fluid driven fracture in porous media. Xia et al. [34, 35] 
proposed a homogenization scheme using a representative 
volume element approach for periodically micro-structured 
materials, e.g., composites, porous media so as to predict 
effective material properties from the PD displacement gra-
dient tensor. Li et al. [36] investigated the influence of poros-
ity on the fracture behaviour of brittle granular materials. It 
was reported that as inter-granular strength increases, the 
influence of porosity declines considerably. Karpenko et al. 
[37] recently addressed the porosity effects on the fatigue 
crack nucleation of additively manufactured alloys using the 
bond-based PD.

It has been reported so far that porosity [12, 29] and 
small-sized defects [38–41] have an suppressing impact 
on the dynamic response in the form of waves and crack 
propagation. To the best knowledge of the authors, the com-
bination of porosity and micro-cracks has not been studied 
comprehensively yet. Accordingly, the present work is aimed 
to fill this gap in the literature.

1 � A brief recap of Peridynamic Theory

1.1 � Fundamental equations

The basic formulation utilized in this paper is the reformu-
lated OSB-PD by Madenci and Oterkus [21]. The equation 
of motion for a particle, at position vector � , is expressed as

where � is the mass density at � and the displacement vec-
tor is represented by � . The force interactions between the 
particle at � and it’s neighbour at �′ are denoted by � and 
�′ , respectively. H defines the neighbourhood, i.e., horizon. 

(1)𝜌(�)�̈(�, t) = ∫
H

[
�
(
�� − �, �� − �, t

)
− ��

(
� − ��, � − ��, t

)]
dH + �(�, t),

In the OSB-PD theory, the interaction forces are not only 
related with the relative deformation of particles each other, 
but also the deformation states of the other particles within 
the horizon. Accordingly, the force vectors defining the 
interactions between the particles are aligned with the rela-
tive position vector in the deformed configuration, but may 
have unequal magnitudes. These vectors can be written as 
follows [21]:

and

In Eqs. (2) and (3), C1 and C2 represent parameters depend-
ing on the material properties as well as the deformation 
states. These parameters can be derived from the strain 
energy functional by neglecting the temperature effects as 
below:

In the above equations, w is the scalar influence function, 
which is related to the initial distance between the parti-
cles. �� and ��′ denote the dilations for the particles at � 
and �′ , respectively. By the definition of � = �� − � and 
� = �� − � , the unit vectors along the relative position vec-
tors in the deformed and initial configurations are � = �∕|�| 
and � = �∕|�| , respectively. In case of small deformation 
analysis, the scalar product of these vectors would become 
� ⋅ � ≈ 1.0 . Since the OSB-PD is capable of dealing with 
the large deflections as well as the plastic deformation prob-
lems [42], the original form of the force state expressions are 
kept throughout the paper. Accordingly, the PD dilatation �� 
for a particle at � is expressed as

In a similar manner, the strain energy density for the same 
particle can be given as

(2)�
(
�� − �, �� − �, t

)
=

1

2
C1

�� − �

|�� − �|
,

(3)�
(
�� − �, �� − �, t

)
= −

1

2
C2

�� − �

|�� − �|
.

(4)

C1 = 4w

[
d
�� − �

|�� − �|
⋅

�� − �

|�� − �|
(
a��

)
+ b

(
|�� − �| − |�� − �|

)]
,

(5)

C2 = 4w

[
d
� − ��

|� − ��|
⋅

� − ��

|� − ��|
(
a���

)
+ b

(
|� − ��| − |� − ��|

)]
.

(6)�� = d ∫
H

(wS� ⋅�)dH.
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For 2D OSB-PD, the influence function, based on the dimen-
sional analysis, can be obtained as w = �∕|�| [21]. � denotes 
the horizon size. S is the stretch between two particles within 
the neighbourhood, which is given as

The other PD material parameters, a, b and d in Eqs. (4)–(7) 
are related to the material properties and horizon size, � [21]:

where � and � , respectively, stand for the bulk and shear 
moduli of the material. h is the thickness of a 2D body. The 
plane stress condition is employed throughout the work.

1.2 � Discrete form of the fundamental equations

Equations (1)–(8) have been defined in the continuous form so 
far. As PD is a particle based method in essence, these equa-
tions can be discretized accordingly. The equation of motion 
in discrete form is written for a particle (i) as

(7)W� = a�2
�
+ b∫

H

w(|�| − |�|)2dH.

(8)S =
|�| − |�|

|�|
.

(9)a =
1

2
(� − 2�), b =

6�

h��4
, d =

2

h��3
,

where N(i) stands for the number of particles within the 
neighbourhood of particle (i). V(j) is the finite volume 
assigned to particle (j) within the horizon of (i) in the discre-
tized body. Similarly, the force interaction vectors in discrete 
form can be written as

and

where �(i)(j) = �(j) − �(i) . C1 and C2 parameters can be 
expressed in discretized form as below:

and

(10)𝜌(i)�̈(i) =

N(i)∑

j=1

[
�(i)(j) − �(j)(i)

]
V(j) + b(i),

(11)�(i)(j) =
1

2
C1

�(i)(j)

|�(i)(j)|
,

(12)�(j)(i) = −
1

2
C2

�(i)(j)

|�(i)(j)|
,

(13)
C1 =4w(i)(j)

[
d
�(i)(j)

|�(i)(j)|
⋅

�(i)(j)

|�(i)(j)|
(
a�(i)

)

+ b
(
|�(i)(j)| − |�(i)(j)|

)]
,

Fig. 1   Porosity representation 
by means of PD damage for the 
low porosity ratios: a � = 4dx , 
b � = 8dx
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where �(i)(j) = �(j) − �(i) . The scalar influence function is dis-
cretized as w(i)(j) = �∕|�(i)(j)| . The PD dilatation term � for the 
particle (i) is expressed in discrete form as

(14)
C2 =4w(j)(i)

[
d
�(j)(i)

|�(j)(i)|
⋅

�(j)(i)

|�(j)(i)|
(
a�(j)

)

+ b
(
|�(j)(i)| − |�(j)(i)|

)]
,

(15)�(i) = d

N(i)∑

j=1

(
w(i)(j)S(i)(j)�(i)(j) ⋅

�(i)(j)

|�(i)(j)|

)
V(j).

In a similar way, the strain energy density is written in dis-
crete form as

Finally, the stretch between the particles (i) and (j) in the 
discrete form is given below:

In the numerical solution of the problems, both surface cor-
rection and volume correction procedures are considered. 
Since the present formulation is OSB-PD, the dilatation and 
deviatoric deformation terms are decoupled. In this respect, 
the dilatation term is corrected for isotropic expansion case, 
while the strain energy terms are corrected for uniform shear 
deformation. The details regarding both the surface and vol-
ume correction procedures have been provided by Ref. [21].

2 � Porosity implementation

Porous micro-structure can be implemented in the PD 
through several ways. The first one is the direct modelling 
of pores [37]. This approach can be effective for low poros-
ity ratios. However, if the variable porosity is concerned 

(16)W(i) = a�2
(i)
+ b�

N(i)∑

j=1

(
S2
(i)(j)

|�(i)(j)|
)
V(j).

(17)S(i)(j) =
|�(i)(j)| − |�(i)(j)|

|�(i)(j)|
.

Fig. 2   Porosity representation 
by means of PD damage for the 
high porosity ratios: a � = 4dx , 
b � = 8dx
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Fig. 3   Problem setup
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with high ratios, direct modelling might be challenging. 
Second, the homogenization approach, in which the mate-
rial is assumed to be homogeneous with reduced material 
modulus [34, 35], can be employed for the regular micro-
structure cases. This technique, however, omits the random 
or complex micro-structure effects. Finally, porosity can be 
implemented as pre-defined damage by the intermediate 
homogenization method as proposed by Chen et al. [29]. 
This approach can be easily tailored for a micro-structure 
including complex and variable porosities. In the present 
work, the main focus is uniform porosity ratio, yet it involves 
a certain level of randomness in terms of the number and 
orientation of broken bonds for each particle.

The intermediate homogenization approach [29] is 
adopted in this work. In the PD framework, the damage 
parameter for the particle (i) can be estimated by the ratio 
of the broken bonds to the total number of bonds associated 
with the particle, i.e., d(i) = Nb∕N(i) . The number of broken 
bonds associated with the particle (i) is represented by Nb , 
while N(i) stands for the total number of bonds connected to 
the particle (i). Based on the definition of damage param-
eter, porosity can be represented by the pre-damage index 
d�(i) = �(i)∕�c . The critical porosity level, beyond which the 
materials can exist only in the form of suspension, is �c . This 
value is taken as 1.0 ( �c = 1.0 ) in the present work, which 
is consistent with the work of Chen et al. [29].

The numerical implementation of uniform porosity by the 
intermediate homogenization technique is quite straightfor-
ward. The algorithm for generating porosity for the particle 
(i) is simply defined as

Fig. 4   Vertical velocity con-
tours for the non-porous body 
and the low porosity ratios: a 
t = 40 μ s, b t = 200 μs
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Fig. 5   Vertical velocity contours for the high porosity ratios: a t = 40 
μ s, b t = 200 μs
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• loop over the neighbour particles (j)
∗ if bond condition=intact

generate a uniform random number (r) in (0,1.0)
∗ if r < dϕ(i)

break the associated bond
update the bond condition for both particles (i) and (j)

∗ endif
∗ endif

• endloop.

Detailed description of the intermediate homogenization 
method can be found in Ref. [29]. Being dx discretization 
size and m horizon factor, the horizon size can be expressed 
as � = mdx . For efficient modelling of the porosity, hori-
zon factor m must be adjusted to cover enough number of 
bonds. For a non-porous body and the low porosity ratios, 
m = 4 can be taken. As for the higher porosity ratios, e.g., 
d� ≥ 0.5 , m must be set as a large number, e.g., m = 8 . These 
values were adopted by Chen et al. [29] as well. The above 
algorithm is applied for generating porous media consider-
ing both m = 4 and m = 8 cases for the same discretization 
size, dx.

As can be seen from Figs. 1 and 2, it is possible to gen-
erate porous media by employing both small ( m = 4 ) and 
large horizon parameters ( m = 8 ). However, as the poros-
ity ratio increases, the numerical model with small horizon 
parameter poorly represents the exact porosity. For instance, 
let’s compare d� = 0.1 cases in Fig. 1; the obtained poros-
ity representations can satisfy the average value of 0.100 
with the standard deviation of 0.047 and 0.023 for small and 
large horizon parameters, respectively. As for the d� = 0.7 
cases in Fig. 2, average porosity value obtained by the small 
horizon parameter is 0.699 with the standard deviation of 
0.071, while these values are 0.701 and 0.035, respectively, 
for the larger horizon parameter case. In summary, even 
though small horizon parameters can represent the porous 
micro-structure in some extent, the larger horizon parameter 
implementation is much meaningful to represent the porosity 
in terms of the PD damage.

3 � Dynamic simulation of bodies 
with constant porosity

Our numerical implementation is first verified by the refer-
ence results presented by Chen et al. [29]. Accordingly, case 
studies are adopted from the reference work. Problem set up 
is schematically illustrated in Fig. 3. Both the material prop-
erties, loading condition and PD discretization are provided 
in Fig. 3. The impulse load is applied during the first 5 μ s, 
and the velocity waves propagating through the porous body 
are captured and average wave speeds are calculated. Total 

i
i

i
i

Fig. 7   Wave patterns of the non-porous body along the mid-span 
( x = L∕2 ) for the horizon parameter, m = 8 at different instances: a 
t = 40 μ s, (b) t = 200 μs

29

Fig. 8   Average wave speeds obtained by the present OSB-PD imple-
mentation and the reference work [29] for the horizon parameter, 
m = 8.0
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simulation time is considered as ttotal = 200 μ s. Non-porous 
body as well as the constant porosity cases, d� = 0.1 , 0.3, 
0.5 and 0.7, are considered as the numerical examples. Time 
step size is adopted as tinc = 0.25 μ s, which is far below the 
allowable limit, 1.55 μs , based on Refs. [21, 22].

3.1 � Wave propagation results

The vertical velocity ( vy ) wave patterns for the non-porous 
and low porosity bodies are obtained and presented in Fig. 4. 
The wave tip locations at the instance of t = 40 μs seem to 
be very close to each other, the differences cannot be distin-
guished at the first glance; however, the influence of porosity 
on the location of wave tip can be distinguished easily at the 
instance of t = 200 μs . In addition to the wave tip locations, 
magnitude of the velocity bands are also suppressed by the 
porosity.

Velocity wave contours for the high porosity ratios are 
demonstrated in Fig. 5. As it is obvious from the figure, 
the high porosity influences the wave propagation behaviour 

remarkably. Not only the wave tip location is altered by the 
porous micro-structure, but also wave patterns, i.e., veloc-
ity magnitude and number of waves are reduced by the high 
porosity ratios.

This behaviour is due to the fact that the impact load is 
compensated mainly by the deformation of the particles in 
the vicinity of the loading area. The disconnected bonds 
as a result of the porous micro-structure prevent the trans-
mission of physical deformations, which in turn excessive 
wave oscillations can be observed in the localized zone, see 
Fig. 5b.

The wave tip locations are captured along the mid-span 
( x = L∕2 ) for the instances of t = 40 , 100, 160 and 200 μ s, 
and are given in Fig. 6. This figure sheds light on the almost 
linear change of the wave tip locations along the mid-span, 
which allows to obtain average wave speeds efficiently. 
Moreover, it is obvious that for the non-porous and low 
porosity ( d� = 0.1 ) cases, impact of the horizon parameter 
on the average wave speed is insignificant.

Fig. 9   Vertical velocity contours for d� = 0.1 at 200 � s: a dx = L∕150 , b dx = L∕200 , c dx = L∕250
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Based on the insights from Fig. 6, average wave speeds 
are obtained for the interval between t = 40 �s and t = 200 
μs . Therefore, as to explain the procedure more clearly, 
Fig. 7 gives the wave patterns along the mid-span of the 
non-porous body with m = 8 for t = 40 μs and t = 200 μs 
instances. In Fig. 7, being Δy the distance between the wave 
tips, the average speed is obtained as Vavg = Δy∕Δt with 
Δt = 160 μs.

Employing the previously defined approach, the average 
wave speeds are evaluated and compared with the reference 
results presented by Chen et al. [29] for the different poros-
ity ratios in Fig. 8. In this figure, both present and reference 
results are provided for horizon factor, m = 8 . It must be 
noted that the reference results are digitized from the graphs 
in [29].

Overall agreement between the results presented in 
Fig. 8 is satisfactory. As the porosity ratio increases, the 
difference between the wave speeds obtained by the pre-
sent method and the reference values tends to increase 
slightly. It is worth noting that the reference results have 

been obtained by the bond-based PD with the conical 
micro-modulus function. Furthermore, the reference paper 
[29] does not report whether surface and volume correc-
tion techniques were implemented or not. In summary, 
these small differences between the present and reference 
results may be attributed to above mentioned factors.

It is a well-known fact that wave propagation in a solid 
body can be affiliated with the characterization of the micro-
structure and approximate prediction of apparent material 
properties. In this regard, the reliable modelling and simu-
lation of wave propagation in porous solids is rather essen-
tial. Ravi-Chandar [43] briefly presented the relationship 
between the bulk waves and the material properties within 
the linear elastodynamic perspective.

3.2 � Parametric sensitivity analysis

After verifying our implementation with a reference work 
and investigating the influence of the porosity ratios on the 
wave propagation speed in a porous medium, a series of 

Fig. 10   Vertical velocity contours for d� = 0.7 at 200 � s: a dx = L∕150 , b dx = L∕200 , c dx = L∕250
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parametric work is carried out to assess the sensitivity of 
the wave patterns and prospectives of porous media with 
respect to the PD parameters, i.e., the horizon size, � , and 
the horizon factor m. As being the lowest and highest poros-
ity ratios, d� = 0.1 and 0.7 are considered for parametric 
studies, respectively. For the purpose of conducting a com-
prehensive parametric study, the particle distance is varied 
as dx = L∕150, L∕200 and L/250. In addition, the horizon 
parameter, m, is varied as 4, 8 and 12 for each discretiza-
tion size, dx. With these assumptions, the horizon sizes for 
m = 4 become � = 26.67 , 20.0 and 16.0 mm, respectively. 
Likewise, the horizon sizes for m = 8 are � = 53.33 , 40.0 and 
32.0 mm, and for m = 12 they are � = 80.0 , 60.0 and 48.0 

mm, respectively. In total, 18 cases are considered. It must 
be noted that some of the above combinations have been 
studied in the previous section; these cases are: dx = L∕200 
with m = 4 and 8 for d� = 0.1 ; and dx = L∕200 with m = 8 
for d� = 0.7 porosity ratio. For the sake of completeness, 
the results for these cases will be included in the following 
as well.

First, the vertical velocity contours at t = 200 μs are cap-
tured. The contours for the lowest porosity ratio are given in 
Fig. 9. This figure suggests that the location of the wave tip 
is not influenced considerably by the horizon sizes as long 
as the number of particles within the horizon is the same, 
i.e., constant m values. However, it is clear that the wave 
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Fig. 11   Wave-crest locations in the vertical direction for the lowest ( d� = 0.1 ) and the highest ( d� = 0.7 ) porosity ratios: a dx = L∕150 , b 
dx = L∕200 , c dx = L∕250
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numbers (inversely proportional to the wave length for a 
unit length) decline as the horizon size becomes smaller for 
the same m values. What is more, the wave patterns become 
more coherent as the discretization becomes finer.

Let us consider the cases with the same particle discre-
tization but varying m values. As obviously seen in Fig. 9, 
the wave numbers decline as increase of the m values for the 
same dx assumptions. It is also worth noting that the veloc-
ity oscillations in the vicinity of the loading region can be 
reduced significantly by increasing the number of particles 
within the horizon. The wave patterns become more coher-
ent for the smaller values of m, which is mainly because of 
the limited (short range) interactions between the particles. 
Overall, Fig. 9 indicates that the wave length in solids can 
be increased substantially by the increase of the horizon size 
in the PD perspective, also see Eq. (9) for the relationship 
between the PD material constants and the horizon size.

The vertical velocity contours for the highest porosity 
ratio are given in Fig.  10. The similar interpretations can 
be obtained from the wave patterns in this figure. The most 
obvious difference between the wave patterns of the low-
est and highest porosity ratios is observed for m = 4 case. 
The excessive oscillations of the velocity component are 
apparent in Fig. 10 for the mentioned case. The main reason 
for the such unstable behaviour is the limited interactions 
between the particles within the same horizon, as the num-
ber of particles within the horizon is small for m = 4 case. 
When many of the PD bonds are broken to represent the 
porosity by means of pre-damage, the remaining PD bonds 
can not recover the necessary PD interaction forces under 
the suddenly applied impact loading.

The wave patterns for m = 4 in Fig. 10 also suggest that 
the wave tip may not propagate along the mid-span. Since 
the bonds are randomly broken to generate porosity, the 
directions of the intact bonds may play an influential role in 

Fig. 12   Random micro-crack 
configurations: a d� = 0.1 , b 
d� = 0.2 , c d� = 0.3
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the direction of wave propagation for lower m values. This 
effect can be avoided by increasing the number of particles 
within the horizon, as shown in Fig. 10 for m = 8 and 12 
cases.

To examine the influence of assumed PD parameters 
on the wave propagation speed quantitatively, the wave 
tip locations are captured for t = 40 , 100, 160 and 200 � s, 

then presented in Fig. 11 for the lowest and highest poros-
ity ratios. For the lowest porosity case, the impacts of the 
discretization size as well as the horizon parameter are found 
to be very limited. The average wave speeds for these cases 
are around 4100–4200 m/s. As the numerical discretization 
becomes finer, their impact is lesser. On the other hand, 
the impacts of the particle discretization and the horizon 

Fig. 13   Vertical velocity con-
tours for random micro-crack 
configurations ( nc = 20 ): a non-
porous, b d� = 0.1 , c d� = 0.2 , 
d d� = 0.3
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parameters become visible in terms of the wave tip loca-
tions for the highest porosity case. This is mainly because 
of the limited number of interactions between the particles 
for higher porosity ratios. For d� = 0.7 case, one can predict 
the average speed excluding Fig. 11a. The average speeds 
for the remaining discretization sizes are evaluated between 
2200 and 2500 m/s. As can be inferred from Fig. 11 and the 

average wave speeds, the higher porosity ratios are more sen-
sitive to the PD parameters. For reliable modelling of higher 
porosity ratios in terms of pre-damage in PD framework, 
the number of particles within horizon must be sufficiently 
large, e.g., m = 8 or higher. Otherwise, unstable velocity 
fluctuations may occur.

Fig. 14   Vertical velocity con-
tours for random micro-crack 
configurations ( nc = 50 ): a non-
porous, b d� = 0.1 , c d� = 0.2 , 
d d� = 0.3
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4 � Wave propagation in solids with constant 
porosity including micro‑cracks

Once our porosity implementation has been validated 
through several numerical examples, and has been discussed 
in detail; we can proceed for further applications. In this 
section, random and regular micro-crack configurations are 
going to be introduced into the porous media, which were 
considered in the previous section.

As for the modelling of micro-cracks, discretization size, 
dx, and horizon parameter, m, have to be adjusted. Hence, 

the discretization size is set as dx = L∕250 . Numerical tri-
als suggest that if the horizon size becomes larger than the 
micro-crack size, the micro-cracks cannot be modelled as a 
straight line crack, since they become like a damage zone. 
Therefore, the horizon factor is taken as m = 4 in micro-
crack models by keeping the porosity ratios small, i.e., 
d� = 0.1 , 0.2 and 0.3.

4.1 � Random micro‑crack configuration

In random micro-crack configurations, both crack location 
and orientation are set arbitrarily, while the micro-crack size, 
l, is set to be varied as l = 6∼10 ⋅ dx . The number of micro-
cracks is considered as nc = 20 and 50. Figure 12 demon-
strates the random micro-crack configurations for the various 
porosity ratios.

As it can be seen from Fig. 12, the micro-cracks are 
allocated throughout the 2D body except for the boundary 
regions. There are no other limitations on either location 
or orientation of the cracks. The micro-cracks also inter-
act, if they intersect to each other. Then, the same loading 
condition with the previous section is implemented for the 
specimens involving micro-cracks. The material proper-
ties as well as the solution procedure are identical with 
the conditions assigned in the previous section. Since we 
adopt smaller horizon parameter, i.e, m = 4 , lower porosity 
ratios, d� = 0.1 , 0.2 and 0.3, are considered here. The verti-
cal velocity patterns are obtained and presented in Figs. 13 
and 14 for nc = 20 and 50 cases, respectively.
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Fig. 15   Wave speeds obtained along the mid-span ( x = L∕2 ) for ran-
dom micro-crack configurations

Fig. 16   Regular micro-crack 
configurations: a 5 × 1 , b 5 × 5 , 
c 10 × 1 , d 10 × 10
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It must be noted that only the number of micro-cracks 
are taken as constant parameters; however, their size, loca-
tion and orientation are unique to each run of the simula-
tion. Even though this implementation causes some level 
of uncertainty, it is still possible to make judgement on the 
wave patterns. The micro-cracks affect the coherence of the 
wave patterns, while the wave-tip locations do not change 
significantly by the existence of micro-cracks. The most 
obvious behaviour, which can be deduced from Figs. 13 
and 14, is that the energy introduced by the impulse loading 

is mainly absorbed by the excessive dynamic response in 
the vicinity of the loading area, see dark blue and red areas 
in Figs. 13 and 14. This behaviour may be explained by two 
phenomena: (1) the reduced horizon parameter is the main 
reason, which confines the interactions between the particles 
to a localized area, which in turn impulse cannot be easily 
transmitted to remote particles; and the PD forces cannot be 
recovered by the remaining intact bonds to compensate the 
impact load, (2) the waves are inhibited to the vicinity of 
the loading area partly because of the micro-crack barriers.
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Fig. 17   Vertical velocity contours at t = 200 μs for regular micro-crack configurations in non-porous media: a 5 × 1 , b 5 × 5 , c 10 × 1 , d 10 × 10
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The average wave speeds for vertical velocity contours are 
calculated with the same procedure described in the previous 
section. Then, these values are plotted with respect to the 
porosity ratios for porous bodies with and without micro-
cracks in Fig. 15. As discussed earlier, the micro-cracks do 
not influence the wave propagation speed significantly but 
their magnitudes.

4.2 � Regular micro‑crack configuration

In the previous part, it has been shown that the random 
micro-cracks can reduce the wave propagation speed just 
marginally. However, their influence on the velocity mag-
nitude and the wave coherence is significant. Their impact 
is mainly governed by the orientation of micro-cracks. In 
this part, we, therefore, decided to investigate the influence 
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Fig. 18   Vertical velocity contours at t = 200 μs for regular micro-crack configurations in porous media ( d� = 0.3 ): a 5 × 1 , b 5 × 5 , c 10 × 1 , d 
10 × 10
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of micro-cracks in regular patterns, which are allocated in 
equally spaced manner and certain orientations. The micro-
cracks are allocated in a regular pattern on the central region 
of the 2D body. Number of crack arrays in x- and y-direc-
tions is varied, and certain crack angles, 0◦ , 45◦ and 90◦ with 
respect to x-axis are considered. The crack configurations to 
be considered are: 5 × 1 , 5 × 5 , 10 × 1 and 10 × 10 . In these 
configurations, the first terms are the number of micro-
cracks in x-direction, while the second terms stand for the 
number of micro-cracks in y-direction. Figure 16 illustrates 
a porous body with regular micro-crack configurations.

In Fig. 16, only the case for crack orientation angle, �
=0◦ is illustrated for saving the space; however, we consider 
other orientations, 45◦ and 90◦ , in the computations as well.

We employ the same modelling techniques implemented 
in the random micro-crack configurations. Figure 17 dem-
onstrates the wave patterns for the non-porous body with 
various crack configurations and orientations. It is the most 
obvious deduction from the figure that the velocity waves 
are transmitted to entire body by means of the intact bonds 
representing the non-porous micro-structure. In addition, the 
waves are reflected back when the crack orientation is �=0◦ 
for all configurations. Reflected waves are also seen in �=45◦ 
case. The wave patterns are mostly influenced by the number 

of crack arrays in y-direction for �=0◦ and 45◦ cases. If the 
cracks are aligned with the impulse direction, the cracks play 
an accelerating role for the propagating wave, especially in 
the 10 × 10 configurations.

We present the wave patterns for the porosity ratio of 
d� = 0.3 case including regular micro-cracks in Fig. 18. 
This figure clearly illustrates effect of the smaller hori-
zon parameter in the form of localized velocities with 
very high magnitudes in the vicinity of the loading region 
as similar to the case of random micro-cracks in Figs. 13 
and 14. Aside from the localized velocities, wave propaga-
tion is suppressed along the mid-span by the existence of 
micro-cracks depending on the number of crack arrays in 
y-direction and their orientation. When the number of crack 
arrays in y-direction is one, their influence on the wave tip 
location can be neglected regardless of the crack orienta-
tion, see Fig. 18a, c. On the other hand, wave propagation is 
suppressed substantially along the mid-span for �=0◦ case 
with 5 × 5 and 10 × 10 configurations. If the orientation of 
micro-cracks is set as �=45◦ , the wave shapes are disturbed 
in a way of asymmetrical pattern.

By the previously defined approach for measuring the 
average wave speeds, influence of the regular micro-cracks 
on the wave propagation speed is investigated. It must be 
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noted that the wave tips are traced along the mid-span and 
their locations are captured at the instances of t = 40 μs and 
t = 200 μs . These wave speeds are obtained for various con-
figurations of micro-cracks in certain orientations and are 
presented in Fig. 19. At the first glance, it can be noticed 
that the regular micro-cracks alter the wave propagation 
speeds for both non-porous and porous bodies in a simi-
lar way. As already been reported in the previous section, 
wave propagations become slower with the porous micro-
structure. On the other hand, both non-cracked body, and the 
micro-cracked bodies with 5 × 1 and 10 × 1 configurations 
behave similarly in terms of the wave patterns and wave 
propagation speeds. In case of the micro-crack configura-
tions of 5 × 5 and 10 × 10 , the wave propagation speed drops 
considerably, if the cracks are aligned perpendicularly to 
the impulse direction ( �=0◦ ). If the cracks are aligned with 
the impulse direction ( �=90◦ ), the wave propagation speeds 
become much closer to the non-cracked case.

5 � Concluding remarks

Porous micro-structure has been implemented through 
OSB-PD formulation using the intermediate homogeni-
zation approach. First, the wave propagation problem in 
porous media has been addressed and it has been observed 
that as the porosity increases, the wave propagation speed 
drops. The present results were verified against the avail-
able reference works and a good agreement was achieved 
between them. Parametric sensitivity analysis with respect 
to discretization size and horizon parameters have been 
carried out. It was found that the higher porosity ratios, 
the more sensitive to the PD parameters. Once the wave 
propagation problem has been addressed appropriately, 
the micro-cracks have been introduced into the porous 
body then. The micro-cracks have been considered in the 
random and regular configurations. In summary, the ran-
dom micro-cracks have altered the wave patterns but the 
wave propagation speeds have remained more or less the 
same. However, the regular micro-cracks have had signifi-
cant influences on the wave propagation speed and pat-
terns depending on the crack orientation and the number 
of crack arrays in y-direction. In conclusion, the present 
OSB-PD implementation holds great potential in simu-
lating the mechanical behaviour of porous bodies. Since 
the main aim of the present work is to examine the wave 
propagation in porous media, which is relevant to char-
acterization of mechanical response of porous materials; 
evaluation of the crack propagation in porous materials 
remains as a future work.
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