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Abstract

Misfolded tau proteins are a classical hallmark of Alzheimer’s disease.
Increasing evidence indicates that tau–and not amyloid–is the main
agent in driving neurodegeneration and tissue atrophy in Alzheimer’s
brains. However, the precise correlation between tau and atrophy
remains insufficiently understood. Here we explore tau-atrophy interac-
tions by integrating a multiphysics brain network model and longitudinal
neuroimaging data for n = 61 subjects from the Alzheimer’s Disease
Neuroimaging Initiative. Using Bayesian inference with a hierarchical
prior structure, we personalize subject-level parameter distributions for
each individual subject and infer group-level parameter distributions
for amyloid positive and negative groups. Our results show that the
group-level tau growth for amyloid positive subjects of 0.0161/year is
significantly larger (p=0.0036) than for amyloid negative subjects of
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-0.2042/year. Similarly, the group-level tau-induced atrophy for amy-
loid positive subjects of 0.0165/year is significantly larger (p=0.0048)
than for amyloid negative subjects of 0.0111/year. These findings sup-
port the hypothesis that amyloid pathology has a magnifying effect on
tau pathology and tissue atrophy. Our model may serve as a descrip-
tive tool to quantify the correlation between tau and atrophy, as well
as a predictive tool to estimate personalized tau pathology, atrophy,
and cognitive impairment timelines from a sequence of medical images.

1 Introduction

Alzheimer’s disease is characterized by two proteopathies that take place in
patients’ brains a decade or more before clinical diagnosis. Plaques of extracel-
lular amyloid-β proteins and neurofibrillary tangles of misfolded tau proteins
are typically found upon autopsy of affected brain tissue [1]. Positron emission
tomography is currently emerging as a promising, non-invasive technology to
visualize and quantify amyloid-β and tau proteins in vivo [2, 3]. While amyloid
has long been thought of as the earliest initiator of the pathological cascade
in Alzheimer’s disease [4], multiple studies now suggest that hyperphosphory-
lated tau is more closely related to cognitive impairment and propose tau as
the major driver of neurodegeneration [5–9].

Macroscopically, the degeneration and loss of neurons manifests itself in a
loss of gray matter tissue, thinning of the cortex, widening of cortical sulci,
and expansion of the lateral ventricles [10–13]. A multitude of clinical stud-
ies have investigated the characteristics of brain atrophy in comparison to
healthy aging and longitudinally across advancing stages of Alzheimer’s dis-
ease. Three main findings are ubiquitous in the literature: brain atrophy rates
are higher in Alzheimer’s patients than in healthy age-matched controls [14–
16], atrophy rates increase over time and with advancing disease [17–20] but
may decrease at late disease stages [14, 19, 21], and regional atrophy is strongly
related to regional intensity of tau pathology as indicated by autopsy or on
tau positron emission tomography images [7, 8, 22]. In fact, tau pathology and
cortical atrophy seem to follow the same stereotypical spatiotemporal progres-
sion [11, 23–25]: Changes are first observed in the medial temporal lobe, with
the hippocampus and entorhinal cortex representing the first affected regions
[26]. With advancing disease, an increasing number of neocortical regions are
affected by tau neurofibrillary tangles and atrophy, initially the lateral tempo-
ral lobe, followed by frontal and parietal lobes. The sensorimotor and visual
cortices are typically the only areas spared from tau pathology and atrophy
up until late disease stages [24].

Computational models are a promising approach for examining the inter-
play of different disease mechanisms, like tau pathology and atrophy, in a
quantitative manner. Due to the close correlation between tau, atrophy, and
the impairment of cognitive function, coupled models of tau and atrophy have
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high potential for predicting personalized timelines of disease progression. Sev-
eral studies have explored computational models for tau pathology, mostly
using cross-sectional positron emission tomography or atrophy data for val-
idation [27–29]. We have previously shown that a network reaction-diffusion
model for misfolded tau protein can be personalized to individual patient
pathologies using Bayesian inference and longitudinal tau positron emission
tomography data from 76 subjects [30]. While several mathematical models
can qualitatively explain the relationship between tau pathology and atrophy
dynamics [31–34], these models have yet to be quantified and validated against
longitudinal and multimodal neuroimaging data.

We have recently introduced a coupled tau atrophy model informed by
clinical observations of atrophy characteristics and dynamics [35]. We have
personalized the model parameters to a preliminary set of longitudinal tau
positron emission tomography and structural magnetic resonance images for
n= 4 subjects and shown that the model predicts realistic atrophy rates that
are in line with clinical findings. Our results suggest that the model parameter
that characterizes tau-induced atrophy is similar across the entire data set,
while other model parameters display notable inter-individual differences. Here
we apply the same tau-atrophy model to a cohort of n= 61 subjects from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [36] database, of which
n= 38 subjects have previously been identified as amyloid positive and n= 23
as amyloid negative [37]. Clinical diagnoses range from cognitively normal
to mild cognitive impairment in both amyloid groups. The expanded cohort
allows us to adopt a hierarchical model structure during parameter inference
and gain insight into group differences depending on amyloid status. Since
amyloid is a known precursor for tau pathology and an indicator for progression
to Alzheimer’s disease, we hypothesize that tau and atrophy dynamics differ
between amyloid positive and amyloid negative individuals.

2 Results

2.1 Subject data

Figure 1 illustrates regional misfolded tau concentrations and amounts of atro-
phy after averaging across all subjects and longitudinal scans in each amyloid
group. The processed image data confirm several expected trends: We observe
higher tau and atrophy values in the n= 38 amyloid positive subjects, who are
more likely to be prospective Alzheimer’s patients, than in the n= 23 amyloid
negative subjects. Especially in the amyloid positive group, we also notice a
strong topographic relationship between elevated concentrations of misfolded
tau and elevated atrophy.

Figure 2 shows the subject-wise trajectory of atrophy over a maximum
span of 14 years. Each trajectory starts with an atrophy value of zero at the
baseline scan, from which we determine reference regional volumes. When aver-
aging volume changes at follow-up visits globally, across all brain regions, we
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observe only a slight overall increase in atrophy over time across amyloid posi-
tive subjects, and even less incline across amyloid negative subjects. However,
the increase in atrophy over time becomes more apparent when focusing on
regions that are known to be affected by atrophy early on in the disease. When
averaging atrophy values over the regions of the temporal lobe and the basal
ganglia, we observe a pronounced increase in atrophy values, especially across
amyloid positive subjects.

Figure 3 summarizes the regionally averaged atrophy rates and highlights
differences in atrophy dynamics between regions and amyloid status. The
results show notably higher atrophy rates in subjects with positive amyloid sta-
tus than in those with negative amyloid status, with a significant difference in
the hippocampus (p= 0.015). The plot also illustrates that the atrophy in our
data roughly follows the spatiotemporal evolution described in the literature
for tau and atrophy. Atrophy rates are highest in the basal ganglia regions and
the temporal lobe, with especially pronounced rates in the hippocampus and
entorhinal cortex. Consistent with the pattern of spatiotemporal disease pro-
gression, regions of the frontal lobe exhibit lower atrophy rates than temporal
regions, closely followed by parietal and occipital regions.

2.2 Posterior distributions

Our model contains three parameters: a transport coefficient ρ characterizing
the diffusion of misfolded tau seeds along the connectome, a growth coefficient
α characterizing the local production or clearance of misfolded tau protein,
and a tau-induced atrophy coefficient Gc quantifying the effect of local tau
pathology on local atrophy. Our Bayesian approach for parameter identifica-
tion results in converged posterior distributions for all three model parameters
on the group and subject levels. All hierarchical and individual posteriors have
a high effective sample size, 0.99 ≤ r̂ ≤ 1.001 and significant movement away
from the weakly informative priors.
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Fig. 1 Imaging data. Regional tau concentrations and atrophy values averaged across all
subjects and visits for amyloid positive and negative groups illustrated on a template brain.
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Fig. 2 Atrophy data. Relative atrophy over time shown globally for all brain regions, the
temporal lobe, the parietal lobe, and the basal ganglia, for amyloid positive and negative
groups.

Figures 4, 5 and 6 and Table 1 summarize the resulting posterior distri-
butions. There are no significant differences in the posterior distributions for
the group mean transport coefficient µρ between amyloid groups, with both
distributions being concentrated close to zero. This similarly is reflected in
the likeliness between the profiles of the individual posterior distributions in
Figure 4. In contrast, the posterior distributions for the group level growth
coefficient µα exhibit clear differences between amyloid groups. Overall, amy-
loid positive subjects exhibit a significantly (p=0.0034) higher tau protein
growth rate than amyloid negative subjects, with a hyperdistribution mean
of 0.017/year and individual distribution means ranging from -0.628/year to
0.444/year for the amyloid positive group, and a hyperdistribution mean of
-0.192/year and individual distribution means ranging from -0.742/year to
0.281/year for the amyloid negative group. While the hyperdistributions for
the tau-induced atrophy coefficient Gc show much overlap for both amyloid
groups, there are noticeably more subjects with higher atrophy coefficients
in the amyloid positive group. In fact, a comparison between individual dis-
tribution means in an independent t-test shows that atrophy coefficients are
significantly higher (p=0.0033) for amyloid positive subjects than for amy-
loid negative subjects. The average subject-specific noise estimates for tau
PET data, σs

t, are lower than those for MRI-derived atrophy data, σs
a, in both
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Fig. 3 Atrophy rates. Median atrophy rates between visits separated by regions for amy-
loid positive and negative groups. Asterisk indicates significant difference between amyloid
groups.

amyloid groups: σs
t = 0.025, σs

a = 0.043 for amyloid positive subjects, and
σs
t = 0.019, σs

a = 0.035 for amyloid negative subjects.

𝜇!

transport coefficient 𝝆 [mm2/year]

group level 𝜌"subject level

Fig. 4 Posterior distributions. Group- and subject-level posterior distributions for the
transport coefficient for amyloid positive and negative groups.

2.3 Posterior predictive simulations

Our cohort contains n = 24 subjects, n = 21 amyloid positive and n = 3 amy-
loid negative, for which both global tau and atrophy data trajectories exhibit
an increasing slope. These subjects align with our model assumptions that
tau pathology and tissue atrophy should be increasing in Alzheimer’s disease
patients.

Figures 7 and 8 show our model predictions for tau and atrophy dynamics
in the entorhinal cortex during the first four years after baseline tau positron
emission tomography in direct comparison to the observed data. The entorhinal
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Fig. 5 Posterior distributions. Group- and subject-level posterior distributions for the
growth coefficient for amyloid positive and negative groups.
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Fig. 6 Posterior distributions. Group- and subject-level posterior distributions for the
tau-induced atrophy coefficient for amyloid positive and negative groups.

cortex is one of the first regions affected by Alzheimer’s pathology. Overall,
the model performs well in capturing the tau and atrophy dynamics in the
selected subjects, however, the credible intervals are relatively narrow and
do not always capture all data points. There are two possible explanations
for this observation: (1) Our model, Equations (5) and (6), produces strictly
monotonic trajectories and is therefore not able to describe non-monotonic
patient data; (2) Our hierarchical model structure leads to shrinkage, as it
allows us to group information across subjects and thereby prevent overfitting
to individual subjects.
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Posterior summary

Aβ+ Aβ−

Parameter mean std mean std

µρ 0.0214 0.0168 0.0287 0.0226

µα 0.0165 0.0446 -0.1922 0.0737

µGc 0.0151 0.0115 0.0108 0.0075
Table 1 Posterior summary. Mean values and standard deviations for model
parameter hyperdistributions and noise estimates for tau and atrophy data for amyloid
positive and negative groups.

3 Methods

3.1 A coupled network model for tau and atrophy

We describe the spatiotemporal dynamics of tau protein misfolding and
propagating across the brain using the classical Fisher-Kolmogorov-Petrovskii-
Piskunov model [38] with a source term and a diffusion term,

dc

dt
= div(K · ∇c) + α c [ 1− c ]. (1)

Equation (1) characterizes the concentration of misfolded tau protein c scaled
between 0 and 1, depending on a diffusion tensor K that determines the speed
and directionality of protein transport and a growth coefficient α that deter-
mines how much pathological protein is produced or cleared locally. We assume
a one-way coupling between the misfolded tau concentration and brain atrophy
of the form

dq

dt
= [ 1− q ]Gc c, (2)

where q denotes the local amount of tissue atrophy depending on the local
amount of misfolded tau cmitigated by a global tau-induced atrophy coefficient
Gc [35].

We solve Equations (1) and (2) on a network model of the brain represented
by an undirected graph G = {E,N}. In this graph, the nodes N describe 83
anatomical regions of interest and the edges E represent neuronal connections
between these regions. The connection strength between each pair of nodes is
summarized in the weighted adjacency matrix W with entries Wij informed
by diffusion tensor images of n= 426 participants of the human connectome
project [39]. In line with previous studies [35, 40], we define the weights of the
adjacency matrix as Wij = nij/`

2
ij , where nij denotes the average number of

white matter fibers detected between two regions of interest and `ij denotes
the average fiber length along the connection. The files used to create the
adjacency matrix are freely available [41, 42] as is the final adjacency matrix
[43]. To discretize Equation (1), we use the weighted graph Laplacian

L = D−W , (3)
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Fig. 7 Posterior predictive simulations. Model predictions for misfolded tau concen-
tration in the entorhinal cortex compared to observed data from longitudinal tau positron
emission tomography. Each subplot represents one subject with circles indicating data points,
solid red lines showing the median model prediction, and shaded areas representing the 95%
credible intervals.

where D is a diagonal matrix with entries

Dii =

N∑
j=1

Wij (4)

This discretization of the diffusion operator preserves both mass and the Fick-
ian property that no transport takes place when two regions have the same
concentrations [44]. Then, the discretization of Equation (1) on the brain
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Fig. 8 Posterior predictive simulations. Model predictions for atrophy in the entorhi-
nal cortex compared to observed data from longitudinal structural magnetic resonance
imaging. Each subplot represents one subject with circles indicating data points, solid blue
lines showing the median model prediction, and shaded areas representing the 95% credible
intervals.

network is

dci
dt

= −ρ
N∑
j=1

Lij cj + α ci [ 1− ci ], i = 1, . . . , N (5)

with ci denoting the normalized concentration of toxic tau protein in regions
i = 1, 2, . . . , N , ρ acting as a transport coefficient, α as a growth coefficient,
and Lij denoting the entries of L. In addition, we define a local measure of
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tissue atrophy qi for each region i

dqi
dt

= Gc ci[ 1− qi ], i = 1, . . . , N. (6)

in terms of the local tau protein concentration ci and the tau-induced atro-
phy coefficient Gc. Combined, the coupled model encompasses three model
parameters that can be tuned to match subject-specific disease trajectories:
the transport coefficient ρ, the growth rate α, and the tau-induced atrophy
coefficient Gc.

3.2 Subject data

We calibrate our coupled tau-atrophy model using longitudinal tau positron
emission tomography and structural magnetic resonance data from n= 61 sub-
jects of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [36].
All subjects have undergone between three and five consecutive tau positron
emission tomography scans and corresponding structural imaging within six
months of the tomography scan. On average, longitudinal scans were separated
by 1.15 years. Out of the full set, n= 38 subjects were previously identified as
amyloid positive and n= 23 as amyloid negative [37]. Table 2 summarizes the
composition of cognitive diagnoses for the full cohort and each amyloid group.

Demographics

Amyloid status CN SMC MCI total

positive n=16 n=9 n=13 n=38

negative n=8 n=5 n=10 n=23

total n=24 n=14 n=23 n=61

Table 2 Subject demographics. Demographics by cognitive diagnosis for whole cohort
and each amyloid group. Key: CN, cognitively normal; SMC, significant memory concern;
MCI, mild cognitive impairment.

3.2.1 Tau data preparation

Tau AV1451-PET data were processed by ADNI according to standard pro-
tocols [36, 45]. Each positron emission tomography image was co-registered to
a corresponding high-resolution T1 weighted magnetic resonance image and
segmented into 68 cortical and 15 subcortical regions according to the Desikan-
Killiany atlas [46]. The resulting 83 regions align with the nodes of the brain
network described in Section 3.1. After normalizing with respect to the infe-
rior cerebellum, ADNI provides regional standardizes uptake value ratios for
all considered subjects and time points. Tau positron emission tomography
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measurements in subcortical regions can be contaminated by off-target bind-
ing in the choroid plexus and nearby vascular structures [47–49]. Therefore,
we base our tau model calibration on the tau positron emission tomography
data from cortical regions only. We map the standardized uptake value ratios
into a zero-to-one interval following previously described methods [30]. This
allows for direct comparison between our model output csim and the data, in
the form of a regional normalized tau concentration 0 ≤ cpet ≤ 1. For each
subject, the initial conditions for the protein field of our model are given by
the tau uptake values measured in the baseline positron emission tomography
scan csim(t = 0) = cpet(t0).

3.2.2 Atrophy data preparation

We use Freesurfer [50] in combination with the Clinica [51] t1-freesurfer-
longitudinal pipeline to extract regional volume information from the struc-
tural magnetic resonance images. For every included subject and visit, we
compute volume measures for all 83 brain regions contained in our network
model. Many of the subjects included in this study underwent a number of
study visits at which only structural image data was obtained, before ADNI
started to routinely include tau positron emission tomography. Therefore, we
include additional information about regional brain volumes for up to twelve
years before the first tau positron emission tomography baseline scan. For each
subject, we use the earliest available structural scan to determine regional
reference volumes vraw

0 to which we normalize the regional volumes of all
follow-up visits within each subject vmri = vraw/vraw

0 . We define a measure of
nodal atrophy as the relative reduction in volume, qmri = 1 − vmri, with an
initial atrophy value at the baseline structural magnetic resonance image of
qmri
0 = 1−vmri

0 . For each subject, we set the initial conditions for the atrophy
field of our model to the relative atrophy values measured at time of the first
tau positron emission tomography.

3.3 Bayesian inference

For each subject, we personalize the parameters of our model such that the
model predictions best reflect the image data. For inference, we define subject-
specific model parameters ϑ = { ρs, αs, Gsc, σs

t , σ
s
a } for s = 1, . . . , N subjects,

containing a transport coefficient ρs, a growth coefficient αs, and a tau-induced
atrophy coefficient Gs

c. We also use hierarchical priors to group information
across subjects, with hyperparameters ϕ = {µρ, σρ, µα, σα, µGc , σGc}. Using
this model construction, we compute the posterior distributions for parame-
ters, ϑ and ϕ, given tau PET data, cpet, and structural MRI atrophy data,
qmri. We calculate the posterior, p(ϑ,ϕ|cpet,qmri) using Bayes’ rule:

p(ϑ,ϕ|cpet,qmri) =
p(cpet,qmri|ϑ,ϕ) p(ϑ,ϕ)

p(cpet,qmri)
, (7)
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Here, p(cpet,qmri|ϑ,ϕ) denotes the likelihood, p(ϑ,ϕ) are the priors for our
parameters and hyperparameters, and p(cpet,qmri) are the evidence.

For the likelihood, we assume a Gaussian error model with independent and
identically distributed noise at each PET and structural MRI measurement
time,

cpets,t ∼ N (c(ϑs, t), σ
s
tI ). (8)

qmri
s,t ∼ N (q(ϑs, t), σ

s
aI ). (9)

for s = 1, . . . , N subjects; t = 1, . . . , Ts, where Ts is the total number of
tau PET scans for subject s, p(ϑs, t) and q(ϑs, t) are the solutions to the
coupled ordinary differential equations (5–6), and σs

t and σs
a are the subject-

specific standard deviations for the Gaussian error model. We assume the
hierarchical structure illustrated in Figure 9 to inform the prior distributions
for our model parameters ϑ and hyperparameters ϕ. This approach allows
us to gain personalized posterior distributions while simultaneously account-
ing for commonalities between subjects [52]. Specifically, we propose that the
hyperparameters of the subject-specific prior distributions are drawn from one
common set of hyperdistributions {µρAβ+, σ

ρ
Aβ+, µ

α
Aβ+, σ

α
Aβ+, µ

Gc

Aβ+, σ
Gc

Aβ+} if
the subject is amyloid positive, or another common set of hyperdistributions
{µρAβ−, σ

ρ
Aβ−, µ

α
Aβ−, σ

α
Aβ−, µ

Gc

Aβ−, σ
Gc

Aβ−} if the subject is amyloid negative.
This distinction allows us to account for potential differences in tau and atro-
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Fig. 9 Hierarchical model. Hierarchical structure for our prior distributions for the
amyloid positive subject group. The same prior structure applies to the amyloid negative
cohort.

phy dynamics between amyloid groups, as well as likely similarities within
amyloid groups. We select informative priors for our hyperparameters ϕ based
on previous results [30, 35]. The full list of priors is summarized in Table
3. Note that the priors for both amyloid groups are identical, such that any
difference in posteriors will result purely from differences in the data.
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Parameter Prior distribution

µρ
Aβ+/Aβ− TruncatedNormal(0 < µρ < 3, mean=0, std=1)

σρ
Aβ+/Aβ− TruncatedNormal(0 < σρ < 3, mean=0, std=1)

ρs
Aβ+/Aβ− TruncatedNormal(0 < ρs < 5, mean=µρ,std=σρ)

µα
Aβ+/Aβ− Normal(mean=0, std=1)

σα
Aβ+/Aβ− TruncatedNormal(0 < σα < 3, mean=0, std=1)

αs
Aβ+/Aβ− Normal(0 < αs < 5, mean=µα,std=σα)

µGc
Aβ+/Aβ− TruncatedNormal(0 < µGc < 3, mean=0, std=1)

σGc
Aβ+/Aβ− TruncatedNormal(0 < σGc < 3, mean=0, std=1)

Gs
c,Aβ+/Aβ− TruncatedNormal(0 < Gs

c < 5, mean=µGc ,std=σGc )

σs
t , σs

a InverseGamma(shape=2, scale=3)

Table 3 Prior distributions. Prior distributions for the personalized model parameters
and corresponding hyperparameters, and the noise associated with tau and atrophy data.

We personalize our model with respect to the imaging data by evaluating
Equations (7) numerically using two frequently used Julia packages. Specifi-
cally, we solve Equations (5) and (6) in time using the DifferentialEquations.jl
library [53] and perform inference using the Turing.jl probabilistic program-
ming library [54]. We use the a No-U-Turn-Sampler [55] to sample four chains
per subject with 1000 tuning samples and 2000 posterior samples per chain.

After inference, we simulate posterior predictive curves for a subset of sub-
jects. Specifically, we select those subjects for which a linear regression on the
globally averaged tau and atrophy data indicates positive slopes for both tau
and atrophy dynamics. For these subjects, the data aligns with our model
assumptions of increasing tau and atrophy over time, thus we expect optimal
conditions for our model performance. We propagate the uncertainty from the
personalized posterior parameter distributions through the model to create
posterior predictions of global tau and atrophy dynamics, including credible
intervals, that can be compared to the observed data.

4 Discussion

In this study, we presented an extension of our previous work to develop a cou-
pled tau-atrophy model informed by clinical observations and personalized its
model parameters to multi-modal neuroimaging data of n = 61 subjects. We
employed a hierarchical model to perform Bayesian inference, which allowed
us to find significant differences between amyloid positive and negative groups
for two model parameters, the misfolded tau growth coefficient α and the
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tau-induced atrophy coefficient Gc. For the growth coefficient, we identified
group-level mean values of 0.0161/year and -0.2042/year for amyloid positive
and negative groups, respectively. In the context of the Fisher-Kolmogorov
model we chose for describing tau misfolding and propagation, a negative
growth rate implies that protein clearance dominates over production. For
the atrophy coefficient, we identified group-level mean values of 0.0165/year
and 0.0111/year for amyloid positive and negative groups, respectively. These
group level differences between amyloid positive and negative subjects support
our hypothesis that the presence of amyloid plaques in the brain has a magnify-
ing influence on tau and atrophy dynamics. These findings are consistent with
other studies observing that the presence of amyloid significantly increases
misfolded tau aggregation [56] and tau-induced neuronal loss [57]. We identi-
fied a very low transport coefficient independent of amyloid status, consistent
with previous findings [30, 58].

When we previously personalized our computational model to a small
preliminary data set of n = 4 subjects, we found the tau-induced atrophy coef-
ficient Gc to be in a very similar range for all subjects, despite large variability
in tau and atrophy trajectories between subjects. When extending our cali-
bration to a larger cohort of subjects in the current study, we discovered more
variability in tau-induced atrophy coefficients, indicating that the relationship
between tau pathology and induced neurodegeneration may be fairly complex
and entail biological factors that are most likely subject-specific.

Our analysis of the volume data indicates that any current or prospective
Alzheimer’s patients in the cohort are in very early stages of the disease, when
atrophy is mostly pronounced in the basal ganglia regions and parts of the
temporal lobe. The atrophy data confirm two main hypotheses: Atrophy and
atrophy rates are more pronounced in amyloid positive than in amyloid nega-
tive subjects, and the spatiotemporal progression of atrophy mirrors the known
topographic pattern of tau. The lack of representation of more advanced dis-
ease stages in our cohort may prevent us from testing our model performance
and predictive capacity on more advanced pathology. However, as more longi-
tudinal scans become available for our subjects, we can naturally address this
potential limitation.

The posterior predictive simulations for a subset of n = 24 subjects show
overall good performance of the model in capturing the observed data. By
design, the model fails to describe tau or atrophy trajectories that are non-
monotonic. Our model also performs weakly when there is a small increase in
tau pathology but steep increase in atrophy or vice versa. The linear coupling
between tau and atrophy through the coefficient Gc in our model fails to reflect
scenarios in which tau pathology is increasing slowly and linearly, but atrophy
is increasing fast and exponentially. This limitation may be resolved by devel-
oping more complex atrophy models that allow for non tau-related avenues
of atrophy. We chose a simplistic model here because there is currently not
enough longitudinal multi-modal imaging data available to ensure parameter
identifiability of more complex models with more parameters during inference.



Springer Nature 2021 LATEX template

16 Correlating tau pathology to brain atrophy

Limited data availability lead us to make simplifications in our inference
methods. For example, we did not include any potential noise in the initial
conditions extracted from the baseline images. This simplification reduces the
number of parameters to infer and makes our approach a viable compromise
between model expressiveness and identifiability.

Naturally, the growing amount of subject data in the future will allow us
to improve our procedure and increase statistical certainty in our conclusions.
To this end, Bayesian methods are the optimal tool to work with continu-
ously updated data, and explore more complex models and assumptions in the
future.

5 Conclusion

This study extends our previous work by personalizing a familiar coupled tau-
atrophy model to a larger data set. The model intrinsically captures known
features of atrophy including the early acceleration, late deceleration of atro-
phy rates and the regional heterogeneity of atrophy that closely follows the
spatiotemporal pattern of tau neurofibrillary tangle invasion. Extending our
data set for model validation to more subjects allows us to confirm our hypoth-
esis that amyloid status affects tau and atrophy dynamics. This is manifested
in the distinct group-level posterior distributions for two out of three model
parameters. Our Bayesian approach provides personalized model parameters,
uncertainties, and model predictions and allows us to characterize the tau-
and atrophy-related pathology in single individuals and in groups of amy-
loid positive and negative subjects. A better understanding of the interplay of
amyloid-beta, tau, and atrophy, fueled by the ability to measure these biomark-
ers in vivo and non-invasively in the living brain, could open doors to advance
diagnosis and early treatment in Alzheimer’s disease.
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