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Abstract. 

The noveify of this work is in presenting interesting error properties of two types of asymptotically “optimal” quadrilaferal meshes 
for bilinear approximation. Thefirst type of mesh has an error equidisfribufing property where the maximum inferpolation error is 
asymptotically fhe same over all elements. The second type has faster than expected “super-convergence” propertyfor certain saddle- 
shaped data functions. The “super-convergent” mesh may be an order of magnitude more accurate than the error equidistributing 
mesh. Both types of mesh are generated by a coordinate transformation of a regular mesh of squares. The coordinate transformation 
is derived by interpreting the Hessian matrix of a datafunction as a metric ffnsor. The insights in this work may have application in 
mesh design near known corner or point singularities. 
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1 Introduction 

This paper presents the theoretical effectiveness of two types of “optimal” bilinear quadrilateral meshes. The novelty of 
this work is in presenting interesting error properties of two types of asymptotically “optimal” quadrilateral meshes for 
bilinear approximation. The first type of mesh has an error equidistributing property where the maximum interpolation 
error is asymptotically the same over all elements. The second type has faster than expected “super-convergence” 
property for certain non-convex saddle-shaped data functions. The “super-convergent” mesh may be an order of 
magnitude more accurate than the error equidistributing mesh. Both types of meshes are generated by a coordinate 
transformation of a regular mesh of squares. The coordinate transformation is derived by interpreting the Hessian 
matrix of a data function as a metric tensor. This work is a basic study on optimal meshes with the intent@ of gaining 
insight into the more complex meshing problem in suiiace approximation and finite element analysis especially near 
corner or point singularities. 

For simplicity, we consider the problem of interpolating a given smooth data function with continuous piecewise bi- 
linear quadrilaterals over a domain to satisfy a given error tolerance. A mesh that achieves this error tolerance with 
the fewest elements is defined to be optimally efficient. Intuitively, one would expect smaller and denser elements in 
regions where the function has sharp peaks or large variations. 

Provably optimal triangular meshes [Z, 41 have been produced by anisotropic mesh transformation. Anisotropic mesh 
transformation is emerging as an effective technique for unstructured grid generation where the vertex distribution is 
highly non-uniform. The central idea is to control the element shapes and sizes by specifying a symmetric metric ten- 
sor that measures the approximation error. The metric tensor determines the corresponding anisotropic transformation. 
The anisotropic mesh is then the image of a uniform mesh of optimal shape elements under the anisotropic transforma- 
tion. Simpson [9] gives a survey on anisotropic meshes. Nadler [6], D’Azevedo and Simpson [3,4], and D’Azevedo [2] 
have studied ZOCUZ anisotropic transformation for generating optimally efficient triangular meshes. Numerous works 
such as Borouchaki [l], Peraire [7], and Shimada [8], have used the Hessian matrix as a metric tensor for anisotropic 
mesh generation. In this paper we apply a similar analysis to bilinear approximation on quadrilateral patches. 

An outline of the paper follows. In $2, we present a simple local quadratic model for error analysis and introduce the 
coordinate transformation to the “isotropic” space. In $3 we show a square over the isotropic space is the most efficient 
shape to minimize the ratio of Error/Area. A regular mesh of squares over the isotropic space would correspond to an 
optimally efficient mesh in the original space. Section 4 states a classical result in differential geometry on the conditions 
for finding the anisotropic transformation [%(x, y), 9(x, y)] for a general data function. Results of numerical experiments 
are presented in $5 to demonstrate the error equidistributing property and the effectiveness of the super-convergent 
meshes. 
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2 Quadratic model 

We shall consider a local analysis where we assume the data function f(x, y) in the neighborhood of (xc, yC) is well 
approximated by its quadratic Taylor expansion, 

f (x7 Y) = f(x,+dx,y,+dy) 

= f(xc, J/c) + Vf(%, y&k &/I + ; Idx, w-wx, &A’ . (1) 

The function is convex if det(H) > 0 and saddle-shaped if det(H) < 0. The key insight in [Z] is in interpreting the 
Hessian matrix H in (1) as a symmetric metric tensor, Let the symmetric Hessian matrix be diagonalizable as 

H = Q’[ 2 i2]~=S’[ i O]S, wheree=sign(det(H)), 

and Q is orthogonal, Q’ Q = I . 

Note that transformation S is essentially a rotation to align eigenvectors along the coordinate axes then followed 
by a simple scaling. Under this transformation S, the expression [dx, dy]H[dx, dy]l reduces to (d@ + e(dg)‘, where 
[n, 91’ = S[x, y]‘. Over the transformed space (3(x, y), s(x, y)), the Hessian matrix is reduced to a simple form (2) with 
no preference for any direction. We shall call this transformed space the “isotropic” space. We shall use a quadratic data 
function to derive a simple model for deriving the maximum interpolation error over a bilinear quadrilateral patch. 

3 Quadrilateral patch 

The bilinear interpolant over a quadrilateral element is given by the isoparametric formulation (CommodY used in 
finite element analysis) over the normalized (p, 9)-space on the unit square, 0 _< p, 4 2 1. Basis functions are 

4l(P,9) = (I- PN - 9L d?2(P,9) = PO - 9)1 
43h 9) = P9, 444(P, 9) = (1 - P)9 ) 

(3) 

that satisfy 4i(xj, yi) = bij, and sum to one, 1 = Ciz’: &(p, 9). 

Mapping from (p, 9) to the original (x, y)-space is by 

xtp, 4) = x144(/4 9) + w$2(P, 4) + X343(P, 4) + X4$4(P, 4) (4) 

y(p, 9) = J/1&@, 9) + Y&@‘> 9) + Y343h 9) + Y4d’4(?? 9) 

that maps vertex (0,O) to (x1, yr), vertex (1,O) to (x2, y2), (1,l) to (xs, y3) and (0,l) to (x4, ~4). The bilinear interpolant 
(over (p, 9)-space) is given by 

i=4 

I?btx(p, 91, y(p, 9)) = zftxiT Yih+i(F?, 9) (5) 

The error function for quadratic interpolation over a puruZZelogram can be shown by direct algebraic expansion (see 
Appendix A) to be 

EQ@, 9) = Pb(dP, @, y(P, 9)) - flx(P> 4)~ Yh 4)) 

= !&J - ; (/&’ - /d2 + Pd9 - 9~)~) 7 (6) 

with centroid at [pc, q,l = [i, +I, 

[llx,zly]=[x2-x1,y2-y11, t~Uxr”J~1=[X4-X1,Y4-Yll, 



'G = E,(pc,9c) = ;+I + ~2) , 

a 
0 = +Q(Pc,~c) d9 = aEQ(pc,9c), (7) 

h = [G, +Wx, & P2 = [%, @f[% g’ 

For a convex function (det(H) > 0), p1 and p2 are positive, hence the maximum error is attained at the centroid [pC, 9J. 

For the case of a general convex quadrilateral, the error expression is more complicated. However, we can show a square 
over the isotropic space is of optimal shape by minimizing the efficiency ratio (Error/Area). Since the isoparametric 
bilinear interpolant (5) exactly fits linear functions [5], the error attained at the centroid (x,, y,) can be written as 

%I = i ‘$ ~txi,yilHtxi,yil’ 
( 

- +c, yclW&, yclf (8) 
1-l 

= i ~(~~~~y~l~[x~~yill~Ix,~y~lH~~~~y,j’)) 
( 

[Xc, yc] = [(Xl + x2 + x3 + x4)/4, (y1+ y2 + y3 + J/4)/41 . 

This expression can be further simplified over the isotropic space where H is the identity, 

(9 

EM = f yJ(i:+~j)-~~+~))) 
( 

= ; ((R: -t- 2; + 2; + 2:) - 415: -I- cg: + y: + lj,’ + ij:, - 433 

= ~(Lf+L~+L~fL:), WithLi?=(~i--~)2+(9i-9,)2, 

where [Zi, iji]’ = S[ri, yi]’ and [a,, y”,]’ = S[x,, y,]’ are the corresponding coordinates over the isotropic space. The area 
of this transformed convex quadrilateral is (see Figure 1) 

Area = k (LlL2 sin(&) + LJssin(82) + I& sin(&) - L4L1 sin(& + 82 + 03)). 

Since the isotropic transformation S in (2) is a rotation followed by a resealing of coordinate axis, the area of quadri- 

lateral over the isotropic space is scaled by v’m = dm (intrinsic to H). By calculus, we can show this ratio 
of Z&/Area is minimized and attained by a square with Ll = L2 = L3 = L4 and Bi = 02 = 8s = n/4. Hence the most 
efficient shape among all general convex bilinear quadrilaterals is a square over the isotropic space with an efficiency 
ratio of l/4. 

If f(x, y) is saddle-shaped (det(H) < 0), the error expression for a parallelogram is still 

EQ(p, 9) = $1 + Pd - ;h(p - j&j2 + ,&(q - 9~)~) . 

Under the anisotropic transformation S, 

For a square over the isotropic space, we have 

b~*,~bJ = [LOI, [%,Dyl= [O,Ll, CL1 = L2,. P2 = -.L2, 

EQ(P, 4) = -i(L2(p - f)’ - L2(q - i)‘) = T((9 - f)’ - (p - 1)‘) . 

The maximum error is L2/8 and attained at (p, 9) = (4 , 1) or (f , 0). 



92) 

Figure 1: Convex quadrilateral over isotropic space. 

Note that both ,LL~ and p2 vanish for 

which correspond to a square rotated by n/4. The above indicates an “exact fit” (E~(p,9) = 0) if ~1 = ~2 = 0. This 
suggests bilinear approximation has higher than expected accuracy and the simple quadratic model is inadequate to 
fully capture the error properties in this case. 

To summarize, a square over the isotropic space in any orientation is of optimal shape for the convex (det(H) > 0) case, 
and a square rotated by 7r/4 is the optimal shape for the saddle-shaped (det(H) < 0) case. A regular square mesh over 
the isotropic space would correspond to a error equidistributing mesh where each patch incurs the same maximum 
error. For a saddle-shaped data function det(H) < 0, a regular mesh of squares rotated n/4 would have higher than 
expected accuracy. 

4 Differential Geometry 

The constant Hessian Matrix H = {hii} in (1) determines the coordinate transformation S that maps [a, tj]’ = S[X, ~1’ SO 
that 

[dx, dy]H[dx, dy]’ = dzi? + edj? . 

For more general functions, we may view the Hessian matrix H(x, y) as a‘metric tensor for measuring the interpolation 
error [dx, dy]H[dx, dy]‘. Thus we need to determine [2(x, y), ij(x, y)], a confinttor~s transformation that gIobaZly satisfies 

[dx, dy]H[dx, dy]’ = dr8 + cd$ f or infinitestimals [dx,dy]. The transformation [52(x, y), I&Y, y)] should satisfy 

h&x2 + 2hndxdy + hudy2 = %dx+ dx 



h 11 = gft”,Y)= (g)2+e(g)2 ) 

h2 = &f(x,y)= gL%+$e& ) 

ha = -$f(X,Yb= (g)2+e(g)2. 

02) 

The conditions for finding the anisotropic coordinate transformation [f(x, y), jj(x, y)] are given by a classical result in 
differential geometry for characterizing a “flat” space [lo]: that the Riemarm-Christoffel tensor formed from the metric 
tensor His identically zero. In this case, a sufficient condition is for H = {hii} to satisfy 

IGhu + Kzhu + IGh22 = 0 (13) 

for some constants K1, &, KS. In particular, (13) is satisfied by harmonic functions (hn + h22 = 0). The coordinate 
transformation [2(x, y), g(x, y)] may be found by solving an initial value ordinary differential equation. The details for 
computing the anisotropic coordinate transformation [f(x, y), tj(x, y)] are described in [2]. 

5 Numerical Experiments 

In this section, we demonstrate the effectiveness of a super-convergent mesh for interpolation over bilinear quadrilat- 
erals on several harmonic functions. To clearly illustrate the error equidistributing properties, only elements entirely 
interior to the unit square are generated to simplify the presentation. 

Example 1. A logarithmic singularity at (x0, yo) = (0.5, -O.Z), 

ftx, y) = Wtx - ~0)’ + ty - yd2)/2, det(W = -4(x - xd2 + ty - yd2)-* . 

Coordinate transformation is 

ftx, y) = arctan(y - y0,x - x0), 5(x, y) = In((x - x012 + (y - y012)/2 . 

Example 2. A near singularity at (x0, yo) = (0.5, -0.2), 

f(x,y) = 
(x - xo12 - (Y - yo12 

(6 - xoJ2 + ty - yo)2)2.’ 
det(H) = -36((x - ~0)~ + (y - ~0)~)~~ . 

Coordinate transformation is 

2(x, y) = & 
( 

l- 
x - x0 

(x - RJ2 + (y - yoj2 > ’ 
9(x, Y) = A 

Y - Yo 
(x - xd2 + (y - yoj2 . 

Example 3. A more severe near singularity at (x0, yo) = (0.5, -0.2), 

f (x y) = ((x - ~0)~ + (Y - yo1212 - 8(x - xoJ2(y - yoJ2 > 
(6 - xoj2 + (y - yoj2j4 

, det(H) = -4OO((x - x,,)~ + (y - yo)2)-6 . 

Coordinate transformation is 

2(x, y) = d3 
( 

1 + 
(y - yoy - (x - XOY 

> ((x - xoj2 + ty - Yo1212 ’ 
9(x y) = 2& (x - Xo)(Y - Yo) 

’ ((x - xoj2 + (y - yo)2)2 

Example 4. Potential flow around a corner at (x0, yO) = (0.5,0.5) where n = n/o = 16/31, a! = 27r - n/16 is the angle of 
corner, and 19 = arctan(y, x), 

f (x, y) = ((x - XO)~ + (y - ~0)~)“‘~ cos(n@, det(H) = - g&(x - x0)2 + (y - yo)2)-46’31. 



Table 1: Summary of results for Example 1. 

II 
-ll 
II 
*I 
II 

U.Y”b “7 

8.90e-05 
' ??e-05 
". I ,e-06 
4.30e-07 
5.37e-08 .,-. 

2.22e-05 
3&e-06 

15695 

Table 2: Summary of results for Example 2. 

Minimum Median 90 Maximum Number of 
error error percentile error elements 

Mesh I 1.30e-02 1.30e-02 1.30e-02 1.30e-02 920 
Mesh II 1.27e-04 1.79e-04 3.18e-04 6.93e-04 921 

Coordinate transformation is 

[f(x, y), S(X, y)] = q((x - ~a)’ + (y - ~0)‘)~‘~~ [sin(80/31), cos(86/31)] . 

The results of the experiments are summarized in Figures 2, 3, 4, 5 and in Tables 1, 2, 3 and 4. Mesh I is generated 
by a regular mesh of squares over the isotropic space. Mesh II is generated by a regular mesh of squares but with the 
n/4 rotation over the isotropic space to capture the super-convergent behavior. Both Mesh I and Mesh II have similar 
element size, element shape and density and differ mainly in the n/4 rotation. The error equidistributing meshes 
(Mesh I) are displayed in Figures 6,8,10 and 12. The super-convergent meshes (Mesh II) are displayed in Figures 7,9, 
11 and 13. The error profiles in 2,3,4 and 5 clearly show significant improvement in accuracy of Mesh II over Mesh I. 
The almost level error profile for Mesh I indicates an equidistribution of interpolation error evenly over all elements as 
predicted by our simple error model. 

Note that Example 1 produces a simple radially symmetric mesh with a regular angular partition. Even in this simple 
case, a r/4 rotation yields substantial improvement in approximation accuracy. 

Results on Table 1 and Table 3 show the expected O(h2) convergence rate for Mesh I. A four-fold increase of elements 
leads to a four-fold decrease in error. Results for Mesh II demonstrate a higher than O(h2) convergence. A four-fold 
increase of elements leads to an eight fold decrease in error, This suggests O(h3) convergence behavior for Mesh II. 

In summary, we have derived a simple error model for bilinear approximation over a parallelogram. We used this 
model to motivate the generation of super-convergent meshes using an anisotropic coordinate transformation of a 
regular mesh of squares. The numerical experiments clearly demonstrate the effectiveness of the super-convergent 
mesh for certain non-convex data functions. The insight gained here might have application to mesh design near 
known point or corner singularities. 
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Table 3: Convergence test on Example 3. 

T 

Mesh1 II 1.51e+OO 
Mesh I 

II 
4.54e-01 

Mesh I l.l3e-01 

Median 
error 

1.51e+OO 
4.54e-01 
l.l3e-01 
2.84e-02 
4.06e-02 
6.69e-03 
8.29e-04 
l.O3e-04 

percentile 
90 

1.52e+OO 
4.54e-01 
l.l4e-01 
2.84e-02 
9.66e-02 
1.63e-02 
2.04e-03 
2.54e-04 

error 
1 Maximum ( Number of 1 

elements 
1.56e+OO 255 
4.60e-01 916 
l.l5e-01 3837 
2.85e-02 15685 
5.09e-01 259 
9.64e-02 918 
l&e-02 3834 
1.92e-03 15682 

Table 4: Summary of results for Example 4. 

Minimum Median 90 Maximum Number of 
error error percentile error elements 

Mesh I 4.21e-4 4.21e-4 4.22e-4 4.26e-4 576 
Mesh II 5.90e-6 9.90e-6 1.90e-5 3.97e-5 575 

4 I- .’ 
. .._..._.....--...--.... - .._..................................-...-...................................... 1 

3L-I 1 -: Elemcnl NV. 

Figure 2: Error profiles for Example 1. 
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Figure 4: Error profiles for Example 3. 
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Figure 5: Error profiles for Example 4. 

Figure 6: Mesh I for Example 1. 



Figure 7: Mesh II for Example 1. 

Figure 8: Mesh I for Example 2. 
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Figure 9: Mesh II for Example 2. 

Figure 10: Mesh I for Example 3. 
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Figure 11: Mesh II for Example 3. 

Figure 12: Mesh I for Example 4. 
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Figure 13: Mesh II for Example 4. 
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Appendix A 

In this section, we show the error function for quadratic interpolation over a parallelogram is given by (6) using only 
simple algebraic expansion. Let the data function be 

f(x,y) = ~~X,ylH[X,yl~+Ig*,g21~x,ylt+C 

and the affine isoparametric transformation be 

Then the interpolation error can be shown to be 

E,(p, 9) = p&+,9), Y(P>9)) - f(% 9), Y(P, 9)) 

= qj - ; (pdp - pa2 + P-A9 - 9A2) > 

with centroid at [pc, 9J = [i, 41, 

G = E,(pc, 9,) = ; (PI + Pd 1 

p1 = [G, q-a~~x, +lf, 112 = [G, ~ylmh vyl’ 

Let the data function over (p, 9)-space be written as 

f(p, 9) = f(x(p, 9), Y(P> 9)) 

= ~lP,91RtP,91'+~8~,821~P~91'+i. 

where R = PHT = [ izi 1:: ] and 

[g1,g2] = ([s1,g21+ hyllq T 9 

E = c+ [gl,g211Xl,y*lf + ~[x1,Yll~[~l~Yll’ 

The function values at the four interpolating corners are 

(14) 

x4 - Xl 1 y4-Yl . (15) 

(16) 

(17) 

(18) 

fl = fW)=E, f3=j(l,1)=~(hn+itz2+2K12)+gi+gZ+E’ 

f2 = f&O)= ;h~+&+e, ~4=f(o,l)=$2+g2+~. 

By (5) and (16) (note the vanishing of linear and constant terms), 

(19) 

EQ(~, 9) = [gfd%(P> 91) - .f(P, 9) 

= ; (p(l - 9% + p9(h + h22 + 2h2) 

+(l - p)9fi22 - (p2h + 92fi22 + 2pqh2)) 

= t (pk + 9L + 2pqh1~ - p2illl - 9’h22 - 2p9ff12) 

= $ (PO - ph + 9(1 - 9$22) 

= ~(A,, + K22) - ;(R,(p - ;I2 + fi22(9 - $7 . (20) 

From (15) and (17, we have & = ~1 and hz2 = p2; hence the error function has the form given in (16). 
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