Skip to main content
Log in

Molecular Surface Modeling and Meshing

  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract.

An increasingly important part of quantum chemistry is devoted to molecular surfaces. To model such a surface, each constituting atom is idealized by a simple sphere. Surface mesh generation techniques are then used either for visualization or for simulation, where mesh quality has a strong influence on solution accuracy. This paper presents our new approach to generating quality meshes on arbitrary molecular surfaces (van der Waals, solvent-accessible or solvent-excluded surfaces). First, a boundary representation (B-rep) of the surface is obtained, i.e. a set of patches and the topological relations between them. Second, an appropriate parameterization and a metric map are computed for each patch. Third, meshes of the parametric domains are generated with respect to an induced metric map, using a combined advancing-front – generalized-Delaunay approach. Finally these meshes are mapped onto the entire surface. Several application examples illustrate various capabilities of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

ID="A1" Correspondence and offprint requests to: P. Laug, GAMMA project, INRIA, BP 105, 78153 Rocquencourt Cedex, France. E-mail: Patrick.Laug@inria.fr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laug, P., Borouchaki, H. Molecular Surface Modeling and Meshing. Eng Comput 18, 199–210 (2002). https://doi.org/10.1007/s003660200018

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003660200018

Navigation