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The problem of structure from motion is
often decomposed into two steps: feature
correspondence and three-dimensional re-
construction. This separation often causes
gross errors when establishing correspon-
dence fails. Therefore, we advocate the ne-
cessity to integrate visual information not
only in time (i.e. across different views), but
also in space, by matching regions — rather
than points — using explicit photometric de-
formation models. We present an algorithm
that integrates image-feature tracking and
three-dimensional motion estimation into
a closed loop, while detecting and reject-
ing outlier regions that do not fit the model.
Due to occlusions and the causal nature of
our algorithm, a drift in the estimates accu-
mulates over time. We describe a method
to perform global registration of local esti-
mates of motion and structure by matching
the appearance of feature regions stored over
long time periods. We use image intensities
to construct a score function that takes into
account changes in brightness and contrast.
Our algorithm is recursive and suitable for
real-time implementation.
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1 Introduction

Structure from motion (SFM) is concerned with es-
timating both the three-dimensional shape' of the
scene and its motion relative to the camera, from
a collection of images. The task is traditionally sepa-
rated into two steps. First, point-to-point correspon-
dence is established among different views of the
same scene, using assumptions and constraints on its
photometry. Then the correspondence is used to in-
fer the geometry of the scene and its motion. This
division is conceptually appealing because it con-
fines the analysis of the images to the correspon-
dence problem, after which SFM becomes a purely
geometric problem. However, the photometric model
imposed to establish correspondence typically relies
on a constraint that is local in space and time, and
therefore prone to gross errors. Global constraints,
such as the fact that large portions of the scene move
with a coherent rigid motion, or that the appearance
changes due to the motion of the scene relative to the
light, are not easy to embed into point-feature corre-
spondence algorithms. Point correspondence is usu-
ally established by first selecting a large number of
putative point features in each image, and then test-
ing their compliance with a global projective model
using standard robust statistical techniques. Even
though efficient techniques are available that avoid
brute-force combinatorial testing, one still has to first
gather the images, then select point features, and fi-
nally test compliance with a global model. Since our
interest is in using vision as a sensor for control, this
approach is not viable because it introduces signif-
icant delays in the overall estimate. Delays can be
catastrophic in a feedback setting since, during the
delay, the system operates in open loop. In this pa-
per we will describe causal estimation algorithms,
which only use measurements gathered up to the cur-
rent time to produce an estimate.

The alternative to separating the correspondence
problem from the inference of shape and motion is
to instead model the image irradiance explicitly and
minimize a discrepancy measure between the mea-
sured images and the model. This is done in so-called
‘direct methods’, which we review in Sect. 1.1. Un-
fortunately, in general the deformation undergone
by image irradiance as a consequence of rigid mo-
tion can only be described by an infinite-dimensional
model, since it depends on the shape of the scene,

!'In this paper we use the term ‘shape’ informally, as the three-
dimensional structure of the scene described by the coordinates
of a collection of points relative to any Euclidean reference
frame.
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which is unknown. At this point, one is faced with
two alternatives. One is to enforce a model on the
entire image, which will necessarily be highly com-
plex and nonlinear. Another is to choose a finitely
parameterizable class of image-deformation models,
and segment the image into regions that satisfy the
model (as verified in a statistical hypothesis test). Vi-
sual information will then be integrated locally in
space (within a region), and globally in time (within
arigid object), while occluding boundaries and spec-
ular reflections are detected explicitly as violating
the hypothesis. Of course, the size of the region will
depend upon the maximum discrepancy from the
model that we are willing to tolerate, and in general
there will be a tradeoff between robustness (calling
for larger regions) and accuracy (calling for smaller
ones). In practice it is not necessary to cover the
whole image with regions, since regions with small
irradiance gradient do not impose shape constraints,
and therefore significant speedups can be achieved.
In this context, our approach is half way between
a dense method (that enforces a global model on the
entire image) and a point-feature-based method (that
enforces a separate model on each feature point).
One can also view our effort as a step towards a dense
representation of shape, moving from points to sur-
faces, with an explicit model of illumination. Indeed,
we seek to integrate into a unified scheme photome-
try (feature tracking), dynamics (motion estimation),
and geometry (point-wise reconstruction and surface
interpolation). In particular, in our experimental as-
sessment, we represent a piecewise-smooth surface
with a collection of rigidly connected planes whose
projections in the image undergo projective deforma-
tions. Spatial grouping allows a significant reduction
of complexity, since points need not be detected and
tracked individually.

1.1 Relation to previous work

The present work falls within the category of struc-
ture from motion, a field that encompasses a vast
variety of research efforts, such as [1,3,5,7,8, 10,
12-14,16,17,19-23,26,27,29]. Of all the work in
SFM, we consider in particular causal estimation al-
gorithms. A batch approach would obviously per-
form better, but at the expense of compromising the
usability for control actions such as manipulation,
navigation or, more generally, real-time interaction.

Since we integrate tracking and motion estimation,
our work also relates to the large literature on image

motion. However, most tracking schemes rely on lo-
cal deformation models and do not exploit feedback
from higher levels. If the scene is a rigid collection
of features that undergo the same rigid motion, this
global constraint can be enforced by a feature tracker
for robustness and precision. A small body of litera-
ture on direct methods addresses this issue, for exam-
ple [9,25]. The basic idea is to use the same bright-
ness constancy constraint equation that is used to es-
timate optical flow or feature displacement as an im-
plicit measurement of some SFM algorithm that es-
timates motion parameters. Image motion is then in-
tegrated globally, as long as the brightness constraint
is satisfied. The exact constraint, however, depends
upon the shape of the scene, which is unknown. Most
work in direct methods represents shape as a collec-
tion of points whose projections are subject to bright-
ness constancy and undergo the same rigid motion.
Integrating motion information over the whole im-
age, however, cannot be done since the brightness
constancy assumption is not satisfied, notably at oc-
cluding boundaries.

Of all possible shape models, planes occupy a spe-
cial place in that the projection of a plane undergo-
ing rigid motion evolves according to a projective
transformation. It is, therefore, natural to represent
a scene as a collection of planes, which has been
done often in the past, as for instance in [2, 24, 30].
Recently, Dellaert et al. [ 7] proposed a direct method
for SFM that poses the problem as finding the
maximum-likelihood estimate of structure and mo-
tion from all possible assignments of three-dimens-
ional features to image measurements. In our work
we avoid computing directly the correspondences.
We use an explicit photometric model of the im-
age deformation. The deformation results from the
motion of the camera looking at piecewise-smooth
surfaces. The model also allows reducing the accu-
mulated drift over long time periods by registering
image patches. Such a global registration has also
been addressed recently by Rahimi et al. [18] in their
study of differential trackers. However, our approach
differs in two ways: first, we explicitly model the
illumination changes which often occur over long
time spans. Therefore, we can match features with-
out being affected by bias commonly accumulated
by differential methods. Second, the chosen surface
representation allows us to efficiently search for the
reappearance of previously selected features.

We seek to build on the strengths of direct meth-
ods, in order to avoid common problems with feature
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tracking by embedding the process in higher-level
motion estimation, while keeping computational
complexity at bay by representing shape using a col-
lection of simple templates.

2 From local photometry
to global dynamics

Let S be a piecewise-smooth surface in three-
dimensional space, and X be the coordinates of
a generic point on it defined with respect to the
reference frame attached to the camera®’. We as-
sume that the scene is static and the camera un-
dergoes a motion {7(¢), R(f)}, where?* R(f) € SO(3)
and T(t) € R? describe the rigid change of coor-
dinates between the inertial frame (at time 0) and
the moving frame (at time ¢). If we let X, = X(0),
then we have X(¥) = R(H) Xo + T(¢). We assume to
be able to measure, at each instant ¢, the image in-
tensity I(x(¢), t) at the point x(¢) = 7(X(¢)), where
7 denotes the camera projection. For instance, in
the case of perspective projection, 7(X) = [%, %]T,
where X = [X, Y, Z]'. We also assume to work
with calibrated cameras, i.e. cameras whose intrin-
sic parameters (such as focal length, principal points)
have been calibrated. For ease of notation we will not
make a distinction between image coordinates and
homogeneous coordinates (with 1 appended). For
Lambertian surfaces* with constant lighting condi-
tions, as a consequence of camera motion, the image
deforms according to a nonlinear time-varying func-
tion of the surface S, gf () as follows:

1(x0, 0) = 1(g} (x0), 1), (D

where xy = x(0) = 7(Xy). In general gf depends on
an infinite number of parameters (a representation of
the surface S):

g; (x0) = T(R()x0p(Xo) + T(1)) )
with p(xg) subject to xop(x) = Xy € S.

2 The camera reference frame is chosen such that the origin
coincides with the optical center of the camera, the x axis is par-
allel to the horizontal image axis and goes from left to right, the
y axis is parallel to the vertical image axis and goes from top to
bottom, and the z axis is parallel to the optical axis and points
towards the scene.

3 $0(3) stands for the space of three-dimensional rotation ma-
trices: SO(3) = {M € R¥>3 | MT M = I and det(M) = 1}.

4 A surface is called Lambertian if it appears equally bright
from all viewing directions.

However, one can restrict the class of functions g}
to depend upon a finite number of parameters (cor-
responding to a finite-dimensional parameterization
of §), and therefore represent image deformations as
a parametric class. Similarly, since in real scenes the
lighting condition is subject to changes during mo-
tion, we will also consider a parameterized model for
the photometric changes.

2.1 A generative model

There is a very simple instance when image defor-
mations are captured by a finite-dimensional defor-
mation model. That is when we restrict the class
of surfaces to planes with unknown normal vector
v € R3. In fact, it is well known that a plane not pass-
ing through the origin (the optical center) can be de-
scribed as ITy = { X, € R? | vT X, = 1}, and therefore

81" (xo) = 7 {R() Xo + T(1)}
=7 {(R() + T()v") Xo}

=7 {(R() + T()v" )xo} 3)
_ M »xo
= Mo | “4)

where M = R(t) + T(#)v" and M, , and M3 denote
the matrices made of the first two rows of M and
the last row of M respectively. This transformation
Eq. (4) for xy is a planar projective transformation
(also known as a homography).

In the appendix, we show in Lemma 1 that any two
matrices M'(¢) and M?(¢), both with rank at least
two, are in one-to-one correspondence with matrices
of the form R(f) + T(H)v'" and R() + T()v?" (if we
require that the scene has to be in front of the cam-
era). Hence, if a scene contains at least two planar
surfaces with sufficiently exciting texture (a precise
definition will be given in Sect. 3.1), we can infer
T(t), R(1), v', and v? by finding the matrices M'(¢)
and M?(f) that minimize some discrepancy measure
between I(xf), 0) and / (M (t)xé, 1), with xf) ranging
in the image domain D', i =1, 2:

M (1) = arg min > 1(xo. 0) — (M (1)x0, D),
t

xpeD!
M?(t) = argmin ) " [[(xo, 0) — [(M*()xo, D),
M2 (1)
xpeD?
&)
for some choice of norm || - ||. D' is chosen to be in-

side the projection of the ith planar surface.
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In practice, scenes are not always made of Lamber-
tian surfaces, and the lighting condition may change
over time. Hence, when modeling the observed im-
ages, it is necessary to take into account photometric
variations. We observe that an affine model can lo-
cally approximate the changes in image intensity be-
tween the initial patch /(xg, 0) and the current patch
I ((R() + T(HOv)x0), 1):

I(xg, 0) = A(w((R(1) + T()v")xo), ) +8 Vxg € D,
(6)

where A € R and § € R. This has been shown to
be a good compromise between modeling error and
computational speed [11]. We can, therefore, extend
Eq. (5) to estimate simultaneously the illumination
parameters A and § together with M (r) and M?(#):

A8 M () =

arg min > [[I(xg,0) — A I(M" (1)x0, )+ 8"l
3180 M (1) o

32,82, M) =

arg_min Y [11(x, 0) — GAI(M2()x, 1)+ 8)].

2282 M2(1) e p2

)

Notice that the residual to be minimized is computed
in the space of image intensities, i.e. the real mea-
surements. We can use the current model A/, 8, and
M (#) and the first image I(xo, 0), xo € D' to predict
the future image /(x(¢ + 1), t + 1). In this sense this
model is generative.

If the scene is made of K planar patches with nor-
mals v', v, ..., vX, all undergoing the same rigid
motion 7(#), R(?), instead of computing A, §', M' (1)
i=1,2,..., K and then inferring R(¢), T(f), we can
model all the unknowns in a dynamical system. Pho-
tometric information is integrated within each patch,
while geometric and dynamic information is inte-
grated across patches. In this sense, this model de-
scribes the scene using local photometry and global
dynamics.

Because T(¢) and v’ appear as a product in Eq. (3),
there is a scale-factor ambiguity between them. To
remove this ambiguity, it is sufficient (the mean-
ing of sufficiency will be made clear in Sect. 3.1)
to fix a scalar among the coordinates of 7(¢) or V',
i=1,2,..., K. Since it is not convenient to fix any
scalar quantity associated with 7(¢), which is time-
varying, we seek to fix a quantity associated with one
of the normals v, i = 1,2, ..., K. Recall that our

inertial reference frame is chosen such that the ori-
gin coincides with the camera center at time 0, and
the z axis is parallel to the optical axis and points to-
wards the scene. For any plane in the scene to be in
front of the camera and visible, the z coordinate of
its normal has to be positive. Therefore, we choose to
fix the z coordinate of v! to be some positive value,
and use 1 for convenience. A dynamical model of
the time evolution of all the unknown quantities is
therefore

AM@E+1) =10+, (0) i=1,2,...,K
Si(t+1) =81 +as) i=1,2,...,K
i 41) = vhi(r) j=1,2

Vit +1) = Vi) i=2,3,...,K

T(t + 1) = exp(@(©) T(t) + V(1)
R(t +1) = exp(@(1) R(?)
V(t+1) = V() +ay (1)
ot +1) = o) +a, )
1(x), 0) = A OIGE((RW) + T (1)x)), 1)
+8'(@®) +n@) Vx,eD, i=1,2,...,K
®)

where M e R, 8 e R,V e R}, T e R3, R € SO(3),
V eR? and w € R3. Let w = [w, @), w3]”; then

0 —w3 Wy
o= |: w3 0 —a)1:| and exp(w) is the matrix
—wy W1 0

exponential’ of ®. v/ stands for the jth compo-
nent of v'. @, (f) and a;(f) account for the change
of illumination, ay (f) and «,,(f) model the unknown
translational acceleration and the rotational acceler-
ation respectively, and D' is the region of the image
that corresponds to the approximation of the surface
S by the ith planar patch with normal v’

Since we have no knowledge of how «y (¢) and «,,(7)
change over time, we choose to model them as white
noise. As a consequence, the resulting V(#) and w(¢)
will be Brownian-motion processes. Of course, if
some prior information is available (for instance
when the camera is mounted on a vehicle or a mov-
ing robot), then we can use it to further refine our
model. The same reasoning applies to «; () and
a5(f), which we also consider as white noise. The

5 The exponential of @& can be efficiently computed as follows:
~ s 52
exp(®) =1+ ﬁ sin (JJwl|) + HZ)W (1—cos (@) for w #0;

exp(@) = I for w = 0. This formula is commonly referred to as
Rodrigues’ formula.
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term n(¢) is defined as an independent sequence iden-
tically distributed in such a way as to guarantee that
the measured image / is always positive.

3 Causal estimation of
a photo-geometric model

We represent the scene as a rigid collection of planar
patches whose projections in images deform accord-
ing to a projective model, and model the unknown
parameters (illumination parameters, plane normals,
rigid motion, and velocity) as the state of the non-
linear dynamical system Eq. (8). Causally inferring
amodel of the scene then corresponds to reconstruct-
ing the state of the model Eq. (8) from its output
(measured images).

3.1 Observability

It is fundamental to ask whether this reconstruc-
tion yields a unique solution or not. In system the-
ory a necessary condition of uniqueness is captured
by the concept of observability. Since we do not
explicitly compute correspondences between planar
patches, we shall make some assumptions on the tex-
ture of the patches. We define a texture to be suffi-
ciently exciting if the constraints it imposes are suf-
ficient to uniquely determine the correspondence for
at least four points in general configuration®. With
this definition in hand, we can state the main theoret-
ical result of this paper:

Proposition 1. [f there are two planes with differ-
ent normals in the scene, the translational velocity is
nonzero, and the texture is sufficiently exciting, then
the model Eq. (8) is observable.

We refer to the appendix for the proof.

3.2 Nonlinear filtering and implementation

Observing the nonlinear nature of the state equation
and measurement equation of the system Eq. (8), we
pose the problem of reconstructing the state of the
system from its output in an extended Kalman-filter
framework. A necessary step towards an algorithmic
implementation is to choose a local coordinate for

6 We say points are in general configuration if there exist at least
four points, among which none of any three are collinear.

the dynamical system Eq. (8). To this end, we repre-
sent SO(3) in canonical exponential coordinates: let
2 =[821, 25, £25]" be a vector in R?; then a rota-
tion matrix can be represented as R = exp(£2).
Substituting the chosen parameterization, we can re-
write system Eq. (8) in local coordinates as:

ME+1) =10 +a, () i=1,2,...,K
Si(t+1)=8()+as(d) i=1,2,...,K
w4+ 1) = vl ji=1,2

Vit+1) =) i1=2,3,...,K

T(t + 1) = exp(@(2)) T(2) + V(1) _
Q(t+1) = 103 (exp(@(1)) exp(R2(1)))
Vit+1)= V() +ay(?)

w(t+1) =w(t) +a,(f)

I(xo, 0) = A (D I(((exp(82(t)) + TV (1))x0). )
+81 () +n(1) Yxg € D, i=1,2,....K
(©))

where logso(3)( ) stands for the inverse of the expo-
nential map’, i.e. £2 = loggp3)(R) is such that R =
exp(.Q).

In the following paragraphs we will give details of
how to initialize the corresponding extended Kalman
filter, how to update the filter, and how to add and/or
remove planar patches during the estimation process.
To streamline the notation, let f and A4 denote the
state and measurement model, £ denotes the state,
and y denotes the measurement, so that the system
Eq. (9) can be written in a concise form as:

{é(ﬂr D= fE0)+w® w)~NO, Xy,
y(®) = h(E@®) +n() n(t) ~ N0, X,).
(10)

With respect to Eq. (9) we have added the model
noise w(t) ~ N (0, X,) to account for modeling er-
rors.

Initialization

As mentioned in Sect. 2.1, for the dynamical sys-
tem to be observable, it is necessary and sufficient

7 The logarithm 10g50(3)(~) can be computed explicitly via
= 17 sin~" (IB])), where
logsoe) (R) =10,0,0]" for R=1I;
%forR:RTandR;é],

the following formula: logges)(R) =
E: sz_RT for R 7+_ RT;
loggo3)(R) = 82, where Q2=
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to set the z coordinate of one normal to some pos-
itive value. In the context of Kalman filtering, fix-
ing one component of the state can be done in
a number of ways. For example, the fixed state
can be simply removed from the model, or its er-
ror covariance can be set to 0, or a corresponding
pseudo-measurement can be added to the measure-
ment equation. As all these techniques are equiv-
alent from a theoretical point of view, we will not
make any choice here. Also, for ease of notation,
we will write the normals in the state with all three
components.

We choose as initial conditions Af) =1, 86 =0, 1)6 =
[00 I]T, TQ=0, Q():O, V()=0, a)0=0, i =
1,2..., K. For the initial variance P,, choose it to
be zeros for A’ and &', a large positive number M for
each component of V', and zeros corresponding to 7'
and £2 (note that this has effectively fixed the inertial
reference frame to coincide with the initial reference
frame). We also choose a large positive number W
for the blocks corresponding to V and w (typically
100-1000 units of focal length). Since we have ex-
plicitly modeled the change of illumination, we set
the variance X, (f) to be low (typically (0.05 x 255)2,
where 0-255 is the range of intensity values. The
variance X, (¢) is a design parameter that is available
for tuning. We describe the procedure to set X', (¢) in
Sect. 3.3. Finally, set

EQO0) =[A)... A 8L .. s
T T
ve v TE R VI o,

P(0|0) = Py,

(1D

where §(t|r) denotes the estimate of £(f) given the
measurements up to time 7.

The recursion to update the state £ and the variance P
proceeds as follows (see Eq. (10)):

Prediction:
Et+11n = fEt), 12
P+ 1)) = FOPtIOFT () + X,
Update:
EG+1t+D)=EG+ 1D+ L0+ D((E+1)
—h(Et+110)), a3

Pt+1t+1)=Tt+ )P+ 10T (t+1)
+Lt+1)Z, ¢+ DL (1 +1),

Gain:

A(t+1)=Ht+1)Pt+1[0HT (t+1)
+2,(+1),
Lit+1)=Pt+1nHT ¢+ DA ¢+ 1),
I'e+1)=1I;— L+ 1)H@E+1),
(14)

Linearization:

F(o) = S E ), 1)
H(t+1) = 2E@+11n),

where /; is the identity matrix.

3.3 Tuning

The variance X, (¢) is a design parameter and it is
chosen to be block diagonal. The blocks correspond-
ing to 7(#) and £2(¢) are also diagonal and have values
1078 to take into account numerical errors in mo-
tion integration. We choose the remaining parame-
ters using standard statistical tests, such as the cumu-
lative periodogram [4]. The idea is that the parame-
ters in X, are changed until the innovation process
€(t) = y(t) — h(E(0)) is as close as possible to being
white. The periodogram is one of many ways to test
the ‘whiteness’ of a stochastic process. We choose
the blocks corresponding to A{) equal to o; and to &)
equal to o5. We choose the blocks corresponding to
Vi equal to o, and the blocks corresponding to V and
w to be diagonal with element o,. o, is adjusted rel-
ative to o, depending on the desired regularity of the
motions. We then vary both o, and o, together with
o, and o;, with respect to the variance of the mea-
surement noise, depending on the level of desired
smoothness in the estimates.

Our tuning procedure typically settles for values in
the order of 10~ for o, and (10™* x 255)? for o3,
while it settles between 1072 to 102 units of focal
length for o,,.

3.4 Ouitlier rejection

We have chosen to model the scene as a collection
of planar patches. As such, we need to test the hy-
pothesis that a region of the image corresponds to
(is well approximated by) a plane in space. To this
end we consider the residual of the matching for each
patch. We compute the normalized cross correlation
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between the transformed image from time O to the
current time ¢ and the measured image at the time ¢
and compare it with a fixed threshold.

If the residual is higher than the threshold, we declare
it to be an outlier. Due to the nature of the approxima-
tion, the test will depend on the size of the regions.
Away from discontinuities, the larger the curvature,
the smaller the region that will pass the test. By run-
ning the test all over the image (or on the portion of it
that corresponds to high gradient values in image in-
tensities, so as to eliminate at the outset regions with
little or no texture information), we can segment the
image into a number of patches that correspond to
planar approximations of the surface S. Obviously,
discontinuities and occluding boundaries will fail the
test and therefore be rejected as outliers.

3.5 Occlusions

Whenever a patch disappears or becomes occluded,
we simply remove the corresponding normal from
the state. To keep the filter estimation reliable, it
is necessary to maintain a minimum number of
patches. Hence, we continuously select new can-
didates. Let 7 be the time when the ith patch is
selected. We shall reconstruct its normal vi (f) using
a simplified dynamical system:

vi(t+1) =i t>T,
I(x!, 7) =
I(e((R(t, D)+ T(t, Dvixi), 1) Vxi € Di,

(16)

where (T(t, 7), R(t, r)) denotes the relative pose be-
tween time T and time ¢, which can be computed via
the following equations:

T(t, ) = T(t|H) — R(t|HR(t|7) "' T(z|7), 17)
R(t,7) = R(t|HR(z|0)~', (
where R(t|f) = exp(fZ(ﬂt)). £2(t]t) and T(¢|t) are the
estimates of the global dynamical system. We have
used the subscript T for v, x/, and D' to empha-
size that they are introduced at time 7. During this
preliminary phase we do not consider illumination
changes. However, A’ and §' will be added once the
novel patches are admitted into the state of the dy-
namical system Eq. (9).

Let vi (tf) denote the estimate (at time #) of the nor-
mal of the ith new feature in the reference frame

of the camera at time 7. vi(t|f) is computed by
means of an extended Kalman filter based on the
model Eq. (16). Its evolution is governed by:

Initialization:

{vi(rm =[001]",

Pi(t|t) =M, (18)

Prediction:

{vi(t—l— 1) = vi(z|r),

PL(t+ 1|t) = PL(t]r) + X, (1), (19)

1>t

Update:

i+ 1+ 1) = v+ 1)+ L+ DU +1)
—Ii(t+1]1)),

where
I'(t 4110 = I(@((RE|DHR(t|D) ™ + (T(t]1)
—REIDR(T|D) ™ TN+ 1" )xi), 1),
(20)

where P! is updated according to a Riccati equation
similar to Eq. (13).

After a probation period §¢, the normals relative to
patches passing the outlier-rejection test described in
Sect. 3.4 are inserted into the state of Eq. (9) using
the following transformation:

R(t|t)~"i(r + 81|t + 8t)
1 —T(z|0)Tvi(t +8t|t + 1)

2

| —
Vo =

The measurements are back-projected to time 0 from
time t through the following relationship:

I(xh, 0) = IG((R(x|0) + T(x|Dvi, )xd), 1)

Vx,eD,  (22)

3.6 Drift

Recall that in order to solve the scale-factor ambi-
guity we have chosen to fix the z coordinate of one
normal. We shall call the patch corresponding to the
selected normal the reference patch. As long as the
reference patch is visible, all the states will be esti-
mated according to it. However, when one reference
patch disappears, another reference patch has to be
chosen and the z coordinate of its normal has to be
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fixed. Since we do not have the exact value of the
new fixed component with respect to the previous
one, using its current estimate necessarily introduces
an error that will propagate to all the other states. In
particular, this error affects the current global mo-
tion estimates R(¢) and 7(¢). Therefore, any time the
reference patch disappears or is occluded, our obser-
vation of motion and structure accumulates a drift
which is not bounded in time. Notice that it does not
make a difference whether the scale factor is associ-
ated to one particular planar patch or to a collective
property of all patches.

As we discussed, this drift does not occur if at least
one patch is visible from the beginning to the end
of the sequence (and it happens to be the reference
patch). While this is unlikely in any real sequence,
it is often the case that reference patches that dis-
appear become visible again. This can be because
they become unoccluded, or due to the relative mo-
tion between the camera and the object (e.g. the
viewer returns to a previously visited position). The
re-appearing of reference patches carries substantial
information because it allows us to compensate for
the drift in the estimates. In order to exploit this in-
formation one must be able to match patches that
were visible at previous times during the sequence.
In the next subsection we describe how this can be
done.

3.7 Global registration

Every time a reference patch disappears, we store the
geometric representation of the patch (coordinates
of the center and normal to the plane in the inertial
reference frame) as well as the photometric repre-
sentation (the texture patch it supports). When the
camera motion is such that the stored reference fea-
ture becomes visible again (e.g. when there is a loop
in the trajectory), we match the stored texture within
a region corresponding to the predicted position in
the current frame. If a high score is achieved, we
conclude that the old patch reappeared. Once this de-
cision is made, we use the difference between the
matched position and the predicted position to com-
pensate for the drift. Note that when there are mul-
tiple matches, only the ‘oldest’ reference patch (the
first reference patch in time) carries the information,
because all later ones are fixed with respect to this
one.

Let x, and v, be respectively the center and the nor-
mal to the plane of the oldest reference patch we have

stored, and let ¥ be the matched position. Then, we
have the following relationship:

(R(t, 7) + BT(t, D)V] )x, = &F, (23)
where ¢ is the ratio between the depth of the refer-
ence patch at time 7 and the depth of the same patch
at time 7, and g is the scale-factor drift. Due to the
noise in determining the matched position, Eq. (23)
does not hold exactly. Therefore, we look for 8 and
¢ that minimize the distance between the estimated
position and the matched position:

B, £ =arg nﬂlin H (R(t, ©) + BT1(t, r)vTT)xt —&x ||2 ,
| (24)

where we have used an SSD-type (sum of squared
differences) error. The optimal 8 and & can be com-
puted using least squares as follows:

<’§) = ([— 11z, ‘1:)11thr f]T[— T(t, r)vthT f])_l

X [ —1(t, 1) vthr f]TR(t, )X;.
(25)

Once the scale drift is computed, we update the value
of the fixed coordinate as:
v} = B, (26)
where 7} is the current value. Note that the rest of
the states will be continuously estimated and updated
according to the newly fixed value.

The global registration performed at a certain instant
of time does not affect the entire trajectory, but only
the current pose of the camera relative to the inertial
frame. This is because — in a causal recursive frame-
work — we are only concerned with the estimate of
shape and motion at the present point in time. If oft-
line operation is allowed, one may want to re-adjust
the entire trajectory, but this is beyond the scope of
this paper [18].

As the length of the experiment grows, matching the
entire database at each novel frame becomes unfeasi-
ble for real-time applications. Since we assume that
the sequence is taken with a calibrated camera, at
each time instant the field of view of the camera can
be computed in the inertial frame, and all features
that fall outside the visibility cone can be discarded
at the outset.
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The visibility of each patch with respect to the cam-
era can be computed based on its normal at the initial
time. More precisely, if x,” R(t, T)v, > 0 we declare
the point to be visible, otherwise we declare it oc-
cluded. Finally, to speed up the search, we restrict
our matching area to a neighborhood of the predicted
position of each patch in the database (e.g. regions of
interest with a radius of 10 pixels).

Although the drift reduction can be made more and
more sophisticated by considering robust statistics,
soft-matching, and a number of other statistical tech-
niques, we found that the procedure described above
is a good compromise between accuracy and compu-
tational efficiency.

4 Experiments

Establishing the performance of a structure from mo-
tion algorithm is in general not an easy task due to the
complexity of the estimated parameters and the large
number of possible scenarios. Aware that this is still
far from being a comprehensive analysis of the algo-
rithm, we choose to test our algorithm on the error
of both structure and motion under a few representa-
tive cases, namely forward motion, sideways motion,
and fixating motion on synthetic data-sets. For real
data, since we do not have the true values for mo-
tion and structure when running the algorithm, we
choose to evaluate the estimation process using peri-
odic motions and measuring the motion error at the
end of a single period (i.e. when the camera refer-
ence system is expected to come back to the initial
position).

4.1 Structure error

The structure estimated with our algorithm consists
in a set of normal vectors of planar patches se-
lected from the initial image of the scene. In our
synthetic experiments we generate three planes and
textures associated with them. We place the center
point of one planar patch at depth 1 m. This patch
is also used to fix the scale factor of the whole es-
timation process (i.e. the z coordinate of the nor-
mal vector is fixed to 1). We run the filter on a se-
quence of 200-frames long and plot the mean and
standard deviation of the error between the estimated
structure and the ground truth in Fig. 1. Among the
three kinds of motions, the error corresponding to
the fixating motion is the lowest (of the order of

3 mm), while the error for sideways motions grows
by a factor of three (of the order of 10 mm). The er-
ror corresponding to the forward motion is the high-
est (of the order of 30 mm), which we attribute to
the presence of local minima observed for instance
in [6, 15].

4.2 Motion error

Exploiting the periodic nature of the chosen motion,
we determine the accuracy of the estimates by mea-
suring the distance between the estimated pose (ro-
tation and translation) of the camera at the end of
a motion period and its initial position. In particular,
the translation error is the norm of the difference be-
tween the estimated translation and the true one, and
the rotation error is measured through the Frobenius
norm of the discrepancy between the true rotation R
and the estimated one R: 1 1; — ﬁRT||§. In our case
T =0and R = I;. In Fig. 2, we plot the motion error
of both the synthetic data and the real data. The mo-
tion error of fixating motion and sideways translation
is comparable, while the error of forward translation
is the highest. This is consistent with the structure er-
ror observed in Sect. 4.1.

4.3 Dirift reduction

In Fig. 3 we show a few images of a sequence ob-
tained by moving a camera around an object (the
actual motion is performed by rotating the object on
a turntable, which is equivalent to moving a camera
around it). This motion is designed in such a way that
no feature remains visible throughout the course of
the experiment. Therefore, drift accumulates, as can
be seen in Fig. 4.

The actual trajectory of the camera is a circle that
passes through the origin, but the estimated trajec-
tory misses the origin due to the scale-factor drift.
Even though the drift may seem small when visual-
ized in terms of the estimates of motion, it severely
affects the estimates of shape, since it results in
misalignment of photometric patches and, therefore,
spoils the meaningful merging of estimates from
multiple passes around the object. By matching vis-
ible features, however, the drift can be compensated
for, as shown in the solid line at the bottom of Fig. 4.
Failure to perform global registration results in a sig-
nificant drift during the second pass around the ob-
ject, shown as a dotted line.
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Fig. 1. Structure error: three different motions are tested on the same simulated scene with known ground truth. 30 trials of
200 frames each are performed. The error in mutual distance between the estimates and the ground truth of a set of 15 planar
patches is plotted. The top-left figure shows the structure error for forward translation (periodic translation along the z axis);
the top-right figure shows the structure error for sideways translation (periodic translation along the x axis); the bottom figure
shows the structure error for fixating motion (points rotating rigidly around an axis passing through their center of mass). Note
that while the sideways and fixating motion graphs share the same axis scale, the forward motion ordinate axis scale is doubled

Once registered, different sequences around the ob-
ject can be merged and the shape (position and
orientation of planar patches) and photometry (tex-
ture supported on such planes) can be reconstructed.
In Fig. 5 we overlay the estimates to a set of im-
ages of the object, to show that the texture patches
nicely align to the appearance of the object. Note that
the illumination changes have been estimated and
corrected.

5 Conclusions

We have presented a novel recursive algorithm to
estimate structure and motion. The input to the algo-
rithm is a sequence of images collected in a causal
fashion, and the output is the collective rigid motion
and a structural representation of the scene.

Our algorithm integrates visual information in space
as well as in time, by using a finitely parameterizable




H. Jin et al.: A semi-direct approach to structure from motion

387

10
0.18F T T T ™ ‘ T T T
16 R
0.16f b -5 -5
mean (mm) std(mm) mean (1e™) std (1e™)
<
T sS4
£014- - - Forward 0.036 0.014 1 g - - Forward 3.439 1.371
c S
2 - 5 -
5ol — Fixating 0.007 0.016 ] §12’ — Fixating 0.557 1.494 1
§ s
b - - Sideway 0.001 0.016 _2‘107 - - Sideway 0.065 1.541 |
5 01f 1 8
5 2
2 o gl i
5008 1 e
g 3
0,06 4+ 59 ]
2 <
£ . @ B
5 AN 2 N AN
E0.04F " - [ _ AN 1 84 - N P N Soos ]
S - \’/\\//’\//\\V/ -7 VoSN T TN T \//\\ § R ANENG ~oT T N A A RN .
N . N
0.02 2
A \N\/\/\¢\/\/\/\/\/W e /\/\,/\/ \/\’/M\/\/’” -
of - - = - = R | o ———=-——-—-=== R iR === 1
! . . ) . . ! ! . A | .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Trials Trials
10°
0.16 T T T T T T T T T AX T T T
0.14 1 35F b
s
€ s
So12f mean = 0.053 cm std =0.021 cm b o 3f mean = 8.28e-04 std = 3.24e-04 1
5 5
5 5
2 3
S 01 4 2251 8
s 5
S =
5 3
gooe 182 1
3 /|2
2 5
15
20.06 A /1 g5 1
2 / \ s
z /\ / 2
° / \ 2
E / \ / €
50.04 ~/ o 4 & 1t
z ~/ ~ K S
\ v
\
0.02f B 05
Py — . . . . . . 1 . ol . . L . . ! . .
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Trials Trials

Fig. 2. Motion error. Synthetic data (top): the three types of motion we consider are periodic in time. The motion estimation
error is thus defined as the repositioning error of the camera after a number of complete cycles. We show the error for the three
types of motion with 30 trials. Motion error. Real data (bottom): the same conditions simulated in the experiments reported
in the fop plots have been recreated on a real scene. A set of objects are placed on a turntable and 20 sequences of periodic
fixating motions are recorded. The camera is positioned about 1 m away from the turntable center. The repositioning error of

the camera motion after a complete cycle is shown for 20 trials

class of geometric and photometric models for the
scene. Image-region tracking and three-dimensional
motion estimation are then combined into a closed
loop. We then cast the problem of structure from mo-
tion in the framework of nonlinear filtering. The un-
known structure and motion are estimated by recon-
structing the state of a nonlinear dynamical system
via an extended Kalman filter. Furthermore, we have
shown that the dynamical system is observable un-

der the assumptions that the scene contains at least
two planar patches with different normal directions
and sufficiently exciting texture, and the translational
velocity is nonzero. The recursive nature of our algo-
rithm makes it suitable for real-time implementation.
Our algorithm also returns an estimate of the appear-
ance of the scene as seen from an arbitrary pose,
and could therefore be used for on-line construction
of three-dimensional image mosaics. We also use
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Fig. 3. Original data-set: the camera moves around the object so that no feature remains visible throughout the course of the
sequence. The sequence is 800-frames long
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Fig. 4. Causally estimated spatial trajectory for a sequence of images (samples of which are shown in Fig. 5). The trajec-
tory of the camera surrounds the object so that no features survive from the beginning to the end of the experiment. Despite
the fact that the camera goes back to the original configuration, the estimated trajectory does not reach the origin (fop). This
can be seen in the detail image (bottom). This is unavoidable since no visual features are present from the beginning to the
end of the sequence. However, starting from frame 524, several features that were visible at some point become visible again.
Our filter stores both the pose and the orientation of the planar patches that become occluded, as well as the texture patch that
they support. Matching the current field of view with stored features allows us to globally register the trajectory and effectively
eliminate the drift. Not imposing global registration results in a drift, shown in the dotted line, during a second pass around the
object
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Fig. 3. Estimated representation of the scene: each feature corresponds to a planar patch represented by a point and a normal
vector. The proposed filter estimates the geometric parameters and stores the texture patch that is supported on the planar fea-
ture. A few views of the reconstructed geometry (normal vectors) and texture (texture patches registered to the estimated pose
of the corresponding planes) are superimposed to contrast-reduced views of the original scene to show that the texture patches
capture the local appearance of the object
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this estimate to globally align the motion estimates
in long sequences, since the appearance of features
once seen can be used to match the same features at
the current time in similar position and orientation.
This allows for compensating the drift in the motion
estimates. To improve the computational efficiency,
we develop some heuristic strategies to avoid match-
ing features that are not visible.
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Appendix

To prove Proposition 1, we need first to introduce the
following lemma:

Lemma 1. Giventheset{p', p>, U, V,v', v}, M’ =
pi(U+VviT),i =1,2, where p' e R, p #0, i =
1,2, UeSO0MB), v, v2,VeR3, v, 140,V £

0, v! ;é V2, and v% =1, then the set {(p', p*, U,
\7 2)|M"—p‘(U+Vu'T)—pi(U+VﬁiT), i =
1,2, p', p? R, U € SO3), V, ', 1 e R3, bl =1}
={(p 0% U Vv Y, (—p ,—p7, (,W“z _Id)U

aV,—- (v + 2”%”;/) —é (v2—|— 2”%—”;/))} where o
is Chosen such that the 7 coordinate of
2wy
( + ”V”2> is 1.
Proof. First, we will show that |p'| = |p'|, i=1,2.
Fori =1, we have

P (U+W")y=p"(T+Vi").

Multiplying both sides from the right by v, , a vec-
tor such that v, L v', v, L d', and v, # 0, and then
taking the norm of both sides, we have

' ULl = 1p"11TvL],

which yields |p'] = |p'|. Second, we will show that
pl=pland p?> = p? orp' = —p'and p> = —p>. We
will prove by contradiction that the other two choices
are not feasible. Without loss of generality, we con-
sider the case p!' = p! and p*> = —p?, where we have

Pl (U + W= pl(T+ V'),
T - = _~T
PpH(U + W )=—p*(U+ Vi*).

Multiplying both equations from the left by VI (
V., LV,V, LV,and V, # 0), we have:

VIU=v!IU and VIiUu=-V]U,

Wthh is a contradiction. Now we will show that
for p' and p? fixed, the set {p', p>, U, V, v vz} is
unique. Assume that there is another set (p', p>, U,
V, 9!, %) that satisfies the following identities:

M'=p (U + V' )y=p (T + VD

M2=p>(U + Vi*)=p*(U + Vi*').

Eliminating U and U we have:

T _»T
—97).

Since b' # v? and V # 0, this 1mphes do e R o #
0: V=aV,anditfollowsthat U = U, D' = —v ,and
7? = 192, Recalling that the z coordinate of both 7!

and D' has to be 1, we have « = 1. Finally, it is easy
to verify that the following choice:

Ve -9t = V(@

pr=—pi=12

5 2wy’

o= )y
V=aV

i 120V .

v __5(U+IIV||2) i=1,2

where o is such that ¥} = 1, is valid with respect to
the statement, which concludes the proof. n

Remark 1. The previous lemma says that the fac-
torization of two matrices {M", M?} into {p', p*, U,
vV, vl vz} has only two solutions. However, it is easy
to show that one of the two solutions corresponds to
having the structure behind the camera (i.e. it is not
visible). Thus, Lemma 1 suggests that, to uniquely
reconstruct the structure and motion from two homo-
graphies, we must require that the scene is in front of
the viewer.

However, we shall show that in our filtering frame-
work it is not necessary to impose such a constraint,
as the model Eq. (8) is already observable.

Proof of Proposition 1

Proof. As far as observability is concerned, we set
o, =0, a5 =0, n() =0, and w(r) = 0. Consider
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a patch at any time instant ¢. If the texture is suf-
ficiently exciting, we know, by the definition, that
we can determine the correspondence of at least four
points between time 0 and time ¢. This, in turn, can be
used to establish a unique homography M [28].
Consider two initial conditions {0, I, w, V, v', v?}
and {0, I;, &, V, v', 9%}. For them to be indistin-
guishable, we must have at any time ¢:

M (1) = p' (O(R@ + T )
= (RO +T@").

In particular, whent =1, R=U = exp(w), T(1) =
V,R=U= exp(w), and T(H)=V:

(28)

M' (1) =pl(U+W!'") =pl(@+ V'),
M>(1) = XU+ W) = (T + V).

(29)
(30)

By assumption v' # v? and V # 0; then from Lem-
ma 1 we know that there is only one set of { /')} , [)f, U,
V,v!, 9%} with ¥’ # v/, i = 1, 2 satisfying Eq. (29)
and Eq. (30). In particular, Jo; € R and o # 0 such
that:

. 1 .
V=—— (Vv +
o < IV

Therefore, we have:

2UTV) o

o ! =0 et (31)

We will show that this will lead to a contradiction.
Consider the time t =2: R(2) = U? and T(2) =
UV + V. The indistinguishability condition is as fol-
lows:

M'(2) = pb(U*+ WV + V')

=Pl + OV + Vo', 32)
M*(©2) = p2(U*+ UV + V)
= pX(O*+ OV + V)i¥). (33)

If UV +V #0, we can apply again Lemma 1 at the
second step, and we have Ja; € R and o, # 0, such

that:

. 1 /. 2UH*Uv+vV

]_),:__(V,Jr (UT*(UV + )) =12,
a UV +V|?

Therefore, we arrive at:

1 —17

! +oap = e —i—ozzDQT (34)

Considering both equations Egs. (31) and (34) we
conclude immediately that o; = o,. Multiplying
Eq. (29) on the left by U and subtracting (32), we
have:

-, 2w

Uu-U*= TGE (35)

The right-hand side of Eq. (35) is a rank-one matrix.
This conflicts with the fact that the difference of two
rotation matrices cannot have rank one.

If UV+V =0, then U?V+UV+V #0, since
V #0. We can apply Lemma 1 on the time t =3
and will reach a contradiction in a similar way. This
concludes the proof. 0
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