Skip to main content
Log in

Biconic subdivision of surfaces of revolution and its applications in intersection problems

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a novel method for the subdivision of surfaces of revolution. We develop a new technique for approximating the genertrix by a series of pairs of conic sections. By using an error estimate based on convex combination, an efficient least-squares approach is proposed that yields near-optimal fitting. The resulting surface approximation is shown to be more efficient than other tessellation methods in terms of the number of fitting segments. This in turn allows us to implement efficient and robust algorithms for such surfaces. In particular, novel intersection techniques based on the proposed subdivision method are introduced for the two most fundamental types of intersections – line/surface and surface/surface intersections. The experimental results show that our method outperforms conventional methods significantly in both computing time and memory cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baciu G, Jia J, Lam G (2001) Ray tracing surfaces of revolution: an old problem with a new perspective. In: Proceedings of Computer Graphics International, 2001, City University of Hong Kong, Hong Kong, pp 215–222

  2. Bangert C, Prautzsch H (1999) Quadric spline. CAGD 16(6):497–515

    Article  MathSciNet  MATH  Google Scholar 

  3. Bangert C, Prautzsch H, (1999) A geometric criterion for the convexity of Powell-Sabin interpolants and its multivariate generalization. CAGD 16(6):529–538

    Article  MathSciNet  MATH  Google Scholar 

  4. Bidasaria HB (1990) Ray tracing surfaces of revolution using a simplified strip-tree method. In: Proceedings of Eighteenth Annual ACM Computer Science Conference, Washington DC, January 1990, pp 427–427

  5. Ballard DH (1981) Strip trees: a hierarchical representation for curves. Commun ACM 24(5):310–321

    Article  Google Scholar 

  6. Boehm W, Hansford D (1991) Bezier patches on quadrics, NURBS for curve and surface design, pp 1–14

  7. Burger P, Gillies D (1989) Rapid ray tracing of general surfaces of revolution. In: Earnshaw RA, Wyvill B (eds) Proceedings of computer graphics international. Springer, Berlin Heidelberg New York

  8. Chapra SC, Canale RP (2003) Numerical Methods for Engineers, 4th edn. McGraw-Hill, Europe

  9. Carnicer JM, Dahman W (1992) Convexity preserving interpolation and Powell-Sabin elements. CAGD 9(4):279–290

    Article  MathSciNet  MATH  Google Scholar 

  10. Cychosz JM, Waggenspack WN (1992) Intersecting a ray with a quadratic surface. In: David Kirk (ed) Graphics Gem III, pp 275–283

  11. Dahmen W (1989) Smooth piecewise quadric surfaces. In: Lyche T, Schumaker L (eds) Mathematical methods in computer aided geometric design. Academic, pp 181–194

  12. Degen WLF (1993) High accurate rational approximation of parametric curves. CAGD 10(4):293–311

    Article  MathSciNet  MATH  Google Scholar 

  13. Dupont L, Lazard D, Lazard S, Petitjean S (2001) Towards the robust intersection of implicit quadrics. In: Workshop on Uncertainty in Geometric Computations, Sheffield, UK, July 2001

  14. Dupont L, Lazard D, Lazard S, Petitjean S (2003) Near-optimal parameterization of the intersection of quadrics. In: Proc of ACM Symposium on Computational Geometry, San Diego, USA, July 2003

  15. Farin G (1989) Curvature continuity and offsets for piecewise conics. ACM Trans Graph 8(4):89–99

    Article  MATH  Google Scholar 

  16. Farouki R, Manni C, Sestini A (2001) Real-time CNC interpolators for Bezier conics. CAGD 18(7):639–655

    Article  MATH  Google Scholar 

  17. Floater M (1997) A counterexample to a theorem about the convexity of Powell-Sabin elements. CAGD 14(4):383–385

    Article  MathSciNet  MATH  Google Scholar 

  18. Floater M (1997) An O(h2n) Hermit approximation for conic sections. CAGD 14(2):135–151

    Article  MathSciNet  MATH  Google Scholar 

  19. Froumentin F, Chaillou C (1997) Quadric surfaces: a survey with new results. In: Goodman T, Martin R (eds) The mathematics of surfaces VII, pp 363–381

  20. Glassner RS (1989) An introduction to ray tracing. Academic, Boston

  21. Goldman RN (1983) Quadrics of revolution. IEEE Comput Graph Appl 3(2):68–76

    Google Scholar 

  22. Guo B (1993) Representation of arbitrary shapes using implicit quadrics. Vis Comput 9(5):267–277

    Google Scholar 

  23. Heo HS, Hong SJ, Seong JK, Kim MS (2001) The intersection of two ringed surfaces and some related problems. Graph Model 63(4):228–244

    Article  MATH  Google Scholar 

  24. Heo HS, Kim MS, Elber G (1999) The intersection of two ruled surfaces. CAD 31(1):33–50

    Article  MATH  Google Scholar 

  25. Jia J, Baciu G, Kwok KW (2002) A novel algorithm on computing intersection curves of two surfaces of revolution based on spherical decomposition. In: Proceedings of IV02 (Information Visualization), London, UK, July 2002, pp 119–125

  26. Kajiya JT (1983) New techniques for ray tracing procedurally defined objects. Comput Graph 17(3):517–524

    Google Scholar 

  27. Kim MS (2000) The intersection of two simple sweep surfaces. In: Proceedings of Riken Symposium on Geometric Processing for Innovative Applications, Tokyo, July, 2000, pp 1–17

  28. Levin JZ (1976) A parametric algorithm for drawing pictures of solid objects composed of quadrics. Commun ACM 19(10):555–563

    Article  MATH  Google Scholar 

  29. Levin JZ (1979) Mathematical models for determining the intersections of quadric surfaces. Comput Graph Image Process 1(2):73–87

    Google Scholar 

  30. Laporte N, Nyiri E, Froumentin M, Chaillou C (1993) Direct visualization of quadrics. In: Eurographics Workshop on Computer Graphics Hardware

  31. Laporte H, Nyiri E, Froumentin M, Chaillou C (1995) A graphics system based on quadrics. Comput Graph 19(2):251–261

    Article  Google Scholar 

  32. Meek DS, Walton DJ (1992) Approximation of discrete data by G1 arc splines CAD 24(6):301–306

    Article  MATH  Google Scholar 

  33. Obradovic R (2000) Determination of intersecting curve between two surfaces of revolution with intersecting axes by use of auxiliary spheres. FACTA UNIVERSITATIS Series: Architecture and Civil Engineering 2(2):117–129

    Google Scholar 

  34. Pavilids T (1983) Curve fitting with conic splines. ACM Trans Graph 2(1):1–31

    Article  Google Scholar 

  35. Piegl LA (1987) Interactive data interpolation by rational curves. IEEE Comput Graph Appl 7(4)45–58

    Google Scholar 

  36. Piegl LA (1989) Geometric method of intersecting natural quadrics represented in trimmed surface form. CAD 21(4):201–212

    Article  MATH  Google Scholar 

  37. Piegl LA, Tiller W, (2001) Biarc approximation of NURBS. CAD 34(11):807–814

    Google Scholar 

  38. Patrikalakis N, Johan H (2001) Intersection problems. In: Farin G, Hoschek J, Kim MS (eds) Handbook of computer aided design. Elsevier, Amsterdam

  39. Pottman H (1991) Locally controllable conic splines with curvature continuity. ACM Trans Graph 10(4):366–377

    Article  Google Scholar 

  40. Powell MJD, Sabin MA (1977) Piecewise quadratic approximations on triangles. ACM Trans Math Softw 3(4):316–325

    Article  MATH  Google Scholar 

  41. Schaback R (1993) Planar curve interpolation by piecewise conics of arbitrary type. Constr Approx 9(6):373–389

    MathSciNet  MATH  Google Scholar 

  42. Sederberg T (1985) Piecewise algebraic surface patches. CAGD 2(1):53–60

    Article  MATH  Google Scholar 

  43. Tu CH. Wang WP, Wang JY (2002) Classifying the morphology of the nonsingular intersection curves of two quadric surfaces. In: Proceedings of geometric modeling and processing, pp 23–32

  44. Wang WP (2001) Modeling and processing with quadric surfaces. In: Farin G, Hoschek J, Kim MS, Abma D (eds) Handbook of computer aided geometric design. Elsevier, Amsterdam

  45. Wang WP, Goldman R, Tu CH (2003) Enhancing Levin’s method for computing quadric-surface intersections. CAGD 20(7):401–422

    Article  Google Scholar 

  46. Wang WP, Joe B, Goldman R (2002) Computing quadric surface intersections based on an analysis on plane cubic curves. Graph Model 64(6):335–367

    Article  MATH  Google Scholar 

  47. Wilf J, Manor,Y (1993) Quadric surface intersection: shape and structure. CAGD 25(10):633–643

    Article  MATH  Google Scholar 

  48. Wijk JJV (1984) Ray tracing objects defined by sweeping planar cubic splines. ACM Trans Graph 3(3):223–237

    Article  Google Scholar 

  49. Willemans K, Dierckx P (1994) Surface fitting using convex Powell-Sabin splines. J Comput Appl Math 56(3):263–282

    Article  MathSciNet  MATH  Google Scholar 

  50. Yang XY (2002) Efficient circular arc interpolation based on active tolerance control. CAD 34(13):1037–1046

    Article  Google Scholar 

  51. Yong JH, Hu SM, Sun JG (2000) Bisection algorithm for approximating quadratic Bezier curves by G1 arc splines. CAD 32(4):253–260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, J., Tang, K. & Joneja, A. Biconic subdivision of surfaces of revolution and its applications in intersection problems. Visual Comp 20, 457–478 (2004). https://doi.org/10.1007/s00371-004-0252-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-004-0252-4

Keywords

Navigation