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We present a solution for the real-time sim-
ulation of artificial environments contain-
ing cognitive and hierarchically organized
agents at constant rendering framerates. We
introduce a level-of-detail concept to behav-
ioral modeling, where agents populating the
world can be both reactive and proactive.
The disposable time per rendered frame for
behavioral simulation is variable and deter-
mines the complexity of the presented be-
havior. A special scheduling algorithm dis-
tributes this time to the agents depending
on their level-of-detail such that visible and
nearby agents get more time than invisible or
distant agents. This allows for smooth transi-
tions between reactive and proactive behav-
ior. The time available per agent influences
the proactive behavior, which becomes more
sophisticated because it can spend time an-
ticipating future situations. Additionally, we
exploit the use of hierarchies within groups
of agents that allow for different levels of
control. We show that our approach is well-
suited for simulating environments with up
to several hundred agents with reasonable re-
sponse times and the behavior adapts to the
current viewpoint.

Key words: Level of detail – multiagent sys-
tems – behavioral modeling

Walking through virtual worlds in real-time often
bears a low degree of naturalism. Either there are
too few secondary characters populating the world or
their behavior is so rudimentary that it does not seem
to be real. In this article, we present a system that al-
lows the simulation of the behavior of large numbers
of characters. These characters can be placed in a vir-
tual world such as computer games or virtual reality
systems and populate an artificial world.
The presented behavior is not only reactive but
also proactive because the characters can antici-
pate the future and plan their next steps. Smooth
transitions between reactive and proactive behav-
ior are also supported by extending the concept
of level-of-detail (LOD) from rendering issues to
the behavioral level. Therefore, a special schedul-
ing algorithm is presented that optimizes the vi-
sual impression without neglecting the behavioral
correctness.
This paper first presents some background and re-
lated work before outlining the solution. The fol-
lowing sections explain our approach and the solu-
tions to various problems. A summary concludes this
article.

2 Related work

In 1999, Funge presented a paper on cognitive mod-
eling in which the existing computer graphics mod-
eling hierarchy was extended by behavioral and
cognitive modeling [15]. We extend this approach
by using LOD concepts over the whole hierarchy,
as depicted in Fig. 1. In this paper, we will intro-
duce LOD methods for the behavioral and cognitive
layers.
LOD concepts such as view-dependent terrain sim-
plification algorithms, multiresolution modeling,
and geometry simplification are widely used and
well-known in computer graphics [16, 18, 19, 28].
Most approaches are restricted to geometric model-
ing issues, including some approaches dealing with
LOD for animation [10, 30]. Very little work has
been done on LOD in the kinematic and physical
layer. Chenney et al. introduce proxies as com-
putationally inexpensive replacements of invisible
dynamic objects [11], which is used to efficiently
plan paths for multiple agents [1]. Brogan and Hod-
gins [6] build a simplified model of the charac-
ters’ movement abilities, which is used to speed up
simulation.
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Fig. 1. The CG modeling hierarchy with LOD (adapted
from [15])

On the behavioral layer, various studies have been
done on different types of agents [29] with dif-
ferent architectural approaches [8, 14, 20]. Hier-
archical sensors, actions, and contexts that allow
more complex behaviors and group engagement
were discussed by Atkin et al. [3]. Group behav-
ior has also been thoroughly investigated in [23, 32].
Musse and Thalmann also presented a hierarchical
model for simulating virtual human crowds [24].
All of these models rely on the reactive agent con-
cept, whereas Funge introduced a cognitive mod-
eling language, which easily generates sophisti-
cated behavior of individuals through a knowl-
edge representation that also allows for reasoning
and planning in addition to reactive behavior [15].
Canamero presented an approach for motivational
behavior [9], Aylett et al. presented motivations
that drive the behavior and continuous planning
in groups [4], and Grosz et al. discussed plan-
ning within groups of agents [17]. Bruderlin et
al. [7] as well as Isla et al. [20] exploited hierar-
chies within an agent, while Atkin et al. presented
a system that makes use of command hierarchies
within groups of agents [3]. O’Hara proposed a sys-
tem that automatically generates hierarchies of sta-
ble subgroups for Reynolds flocking algorithm [26]
from which some concepts will be applied to our
approach.

With respect to LOD on the cognitive level,
O’Sullivan et al. present a framework that allows
for LODs within geometry, motion, and even on
the cognitive level [27]. Their approach uses role-
passing [21] to adapt a character’s possible be-
havior depending on its LOD. An approach by
Musse et al. [22] introduces three different lev-
els of autonomy for an virtual character: guided,
programmed, and autonomous. However, these lev-
els are only compared to each other and they do
not infer on switching from one level to another
automatically.
We combine the approaches of Funge [15],
O’Hara [26], and Musse et al. [22] and extend it by
introducing level-of-detail with smooth transitions
from purely controlled over reactive to proactive be-
havior within a real-time environment. Additionally,
we make use of hierarchies within groups of agents
by passing the control from one character to another
within the hierarchy.

3 Problem description

The simulation of intelligent characters has become
very interesting for the film industry in order to pop-
ulate sets with artificial characters. Such high-quality
simulations can be simulated offline and are there-
fore not restricted with regard to computation time.
In comparison, real-time simulations, such as games,
must simulate the whole world within a few millisec-
onds. In order to provide an acceptable level of intel-
ligence, one needs as much time as possible. These
two conflicting requirements demand that a tradeoff
be made between time spent for simulation and the
quality of “thinking.”
The time per frame is determined by the framer-
ate, which should be at least interactive. This time is
split up into rendering, kinematic and physical cal-
culations, and behavioral simulation, as shown in
Fig. 1. This article only addresses the latter while
using concepts known from real-time rendering.
The key is using a level-of-detail approach that dis-
tributes the limited, available amount of time such
that the quality of the visual impression is as high as
possible.
This visual impression depends on the rendering
quality as well as on the presented behavior, which
should be as intelligent as possible. Intelligence
means that some amount of time is invested in
“thinking,” which not only generates reactive, but
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Fig. 2. Solution overview. The scheduler depends upon the LOD and the available overall time for each agent. The hierarchi-
cal control then selects the appropriate behavior from only reactive, controlled, or proactive

also proactive behavior. Hence, the character has the
ability to anticipate the future and plan its next steps.
Additionally, the agents include the behavior of other
agents into their deliberations and can, therefore,
select their actions with regard to others. Such so-
phisticated planning is exponentially complex and
therefore time-consuming. Likewise, planning in
a dynamic environment is not straightforward since
changes have to be continually taken into account.

4 Solution overview

Figure 2 shows an overview of our solution. First,
by using a classification scheme (a), a value is as-
signed to each character that represents its LOD. Our
behavioral subsystem receives regularly an amount
of time (b), which can be invested into the simula-
tion of the behavior. Thereafter, depending on the
available time and each LOD, a special scheduling
algorithm decides which agents should be activated
and how much time each one receives (c). After the
time per agent has been determined, the system de-
cides whether an agent can act independently or if it
has to pass its control to a more superior agent in the
hierarchy (d). Then, the appropriate behavior rou-
tines are selected depending on the available time,
the autonomy of the agent, and the LOD (e). Such be-
havior can be purely reactive (e.g., avoiding a lake),
reactive and controlled (e.g., staying with the herd),
or reactive and proactive (e.g., looking for food). In
our setup, we activate the agent engine whenever the
overall simulation has to perform a step, that is, ap-
proximately during every frame. Of course, this fre-
quency can be independent from the frame-rate.

4.1 LOD setup

Before simulating one step, we have to setup the
LOD for each agent. As known from rendering, the
LOD depends on the visibility and the distance to the
camera: invisible objects are not rendered at all and
objects far away are less detailed than those nearby.
For behavioral simulation, this approach has to be
adapted slightly because invisible characters do not
stop living when they are outside the visible area.
In our setup, each agent is permanently active and
acts as constantly as possible. Therefore, we cannot
totally neglect invisible characters and have to simu-
late them, too. However, this can be done much less
frequently than for visible agents. In order to main-
tain a consistent visual impression, an area is added
where agents are classified as “nearly visible.” These
are the agents that could soon enter the visible part of
the environment and therefore get a higher frequency
than the invisible ones just to make sure that they re-
ally behave correctly.
Since the LOD depends mostly on the camera posi-
tion or orientation and the position of the agent, this
setup is performed only when the camera position or
orientation has changed significantly. Since the posi-
tion of the agent can change, too, the LOD setup is
also applied regularly – in our case, approximately
every second.
According to Fig. 3, we divide the world into three
zones:
• Visible (grey): This is the part of the world that is

currently rendered.
• Nearly visible (blue): This is the area adjacent to

the visible zone.
• Invisible (red): The remaining parts of the world.
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Fig. 3. The LOD setup scheme. Top: The environment is split into three distinct areas determined by the visibility. These ar-
eas are further divided based on the distance from the camera. Bottom: Real view with classification. Invisible characters
show their LOD in red, nearly visible ones in blue and the others in gray values. The camera is denoted by the large white
square.

During rendering, a similar classification is made for
the view frustum culling and we use the same process
for our needs. All objects are stored in a quadtree,
which is traversed only once to determine the com-
pletely visible objects. First, all agents are marked
as invisible. Then, all agents in the quadtree cells
that have at least one corner in the view frustum are
marked as nearly visible. For those cells, each agent
inside is checked individually for its visibility and
is possibly marked as visible. Thus, this classifica-
tion does not introduce any additional cost but the
size of the nearly visible area depends on the po-
sition and orientation of the camera relative to the
quadtree. In order to generate an exact determination
of the nearly visible agents, this process should be
done twice, first with a larger view-frustum and then
with the correct view frustum. Although this pro-
cess is rather expensive, the classification of visible
agents is exact. Only the nearly visible area can be
sometimes slightly inaccurate. However, this draw-
back is negligible compared to the cost of a second
traversal.
Furthermore, each of these zones is divided into sev-
eral subzones depending on the distance from the
camera. Each one is assigned a value, where lower
values specify more important areas. Therefore, the

values for the visible agents are set according to

lodvis(d) =
⌊

d · lodmax

dmax

⌋
, (1)

where lodmax denotes the maximal number of levels,
dmax the maximal distance, and d the distance to the
camera. This assigns the visible agents a value ac-
cording to their distance from the camera. Then, the
values for the nearly visible agents are set to

lodnvis(d) = max(lodvis(d)+ cnvis, lodmax) , (2)

where cnvis is a positive and constant value. There-
fore, nearly visible agents have an LOD value of at
least cnvis. Similarly, the invisible agents get a LOD
according to

lodinvis(d) = max(lodnvis(d)+ cinvis, lodmax) (3)

where cinvis has the same meaning as cnvis and the
value is therefore at least cnvis + cinvis. Due to clamp-
ing, all values remain in [0, lodmax]. In our setup, we
have lodmax = 20, cnvis = 5, and cinvis = 10. Thus, all
nearly visible agents are in [5, 20] and the invisible
agents in [15, 20].
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One could also imagine multiplying the values of
the preceding step with a scaling factor. This ac-
tion would stretch the scale radially and further
reduce the importance of agents not in sight. We
have tried this but have not noticed any noticeable
improvement.

4.2 Scheduling

After having set the LOD for each character, the sim-
ulation is started for a single frame. The amount of
time available for behavioral simulation depends on
the rendering and physical simulation effort. When
dealing with a large number of agents, one can imag-
ine that it is not possible to activate every agent dur-
ing every frame. We can only activate as many agents
as possible and also want to allow some agents to act
proactively. Since characters near the camera are vi-
sually more attractive, we would like to invest more
time in them.
Therefore, we use a scheduling algorithm, as known
from operating systems, to distribute the available
time in a fairly fashion. But there are some im-
portant differences between process scheduling and
scheduling in our case. Unlike processes, our agents
have two different stages. First, the reactive system
is rather fast and it is important to maintain a cor-
rect state. For example, changing an internal state or
avoiding lakes is part of this subsystem. Secondly,
the proactive phase can use as much time as avail-
able. While it is necessary to run the first stage as
often as possible, the second stage should only be
activated if enough time is available for one partic-
ular agent to plan. Since the first stage is executed
continually, each activated agent needs at least a min-
imal amount of time in order to finish. Obviously, the
first stage should be activated as often as possible to
maintain a correct state, whereas the second can have
a lower frequency, yet should be as long as possible.
Our scheduling algorithm is based on a priority
queue algorithm [31], which is known from process
scheduling in operating systems. In short, the prior-
ity queue scheduling algorithm assigns each process
a priority and places it into the queue according to
that priority. Then, each process that is ready to run
is placed into a ready-list, which is ordered by pri-
ority. The most important process gets some amount
of processor-time before decreasing its priority and
allowing other processes to run, too.
In our case, the priority of an agent is its LOD. Each
agent is put into a queue according to its LOD. Then,

the algorithm assigns each queue a time depending
on the priority and the number of agents according to

Ti = T ·qi , (4)

where T is the total time received for the whole sim-
ulation step. qi is the quantum of each list determined
by

qi = N − i

n̄
, (5)

where N denotes the number of priority queues, e.g.,
the number of levels. n̄ is the weighted sum of all
agents according to

n̄ =
N∑

i=1

(N − i) · si , (6)

with si being the size of the ith priority queue. We
can calculate qi in O(N + M) with N being the
number of priority queues and M the number of
agents. O(M) is present since all agents have to
be placed in the correct queues and to calculate
the weighted sum and O(N) because of the assign-
ment of qi to each queue. A quantitative measure-
ment is given in Fig. 4, where the values for re-
sorting and calculating the time quanta is denoted
for a setup with 10 and 20 queues for a different
number of agents. Note, that this shows the aver-
age of the measurements during a flight over the
scene such that many agents have to change the
queue.
Assuming the agents have an average reactive run-
time of treact, we can determine the time t̄ j needed for
each agent:

t̄ j =
{

treact if Ti
si

< treact

Ti
si

else
. (7)

With that, we allow each activated agent to at least
run its reactive behavior. But, if the agent has a high
priority it will hopefully receive more time than treact
and is therefore capable of acting proactively.
In order to allow an agent to plan for a relatively long
duration of time, we use time accounts. Each agent
has its own account where it can accumulate un-
used time in order to plan later for a longer duration.
The time accounts have a lower and upper threshold
such that an agent cannot infinitely accumulate time.
Without thresholds an agent could block the simu-
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Fig. 4. Time needed to resort the scheduler queues and calculate the time quanta depending on the LOD. The blue line
denotes the case with 10 queues and the red line with 20

lation for several seconds or even create starvation.
Therefore, the upper boundary is set to half a mil-
lisecond. If the account is negative, the agent is not
allowed to plan at all in order to possibly increase its
account. Agents with a positive account are free to
decide whether they would like to invest in planning
or further accumulate their time. Therefore, the agent
gets as total amount of time t:

t =
{

t̄ j + taccount(i) if taccount(i) > 0
treact else

. (8)

treact is determined from the average run-time after
startup by only allowing reactive behavior over the
first few frames. Currently, our system uses the same
value for all agents but this could easily be extended
in order to be agent-specific. In order to prevent star-
vation, we apply a round-robin scheme [31] inside
each queue so that each agent is activated regularly.
Figure 5 shows a comparison of the frequency of ac-
tivation between a simple round-robin scheduling al-

gorithm (red) and our approach (blue) using the same
setup. As can be seen, nearby agents get activated on
average more than distant ones.

4.3 Hierarchical control

Our system also allows for hierarchically organized
groups of agents as presented in [25]. Recursive
group definitions result in tree-structured dependen-
cies within the group. These hierarchies make it pos-
sible to further reduce time-complexity.
When an agent recognizes its time is decreasing due
to being distant from the camera, it can decide to pass
its little additional time to a more superior agent. Af-
ter having passed the control to another agent, only
reactive behavior is possible. The superior agent col-
lects the time and can therefore plan longer. The infe-
rior agent remains close to the superior agent so that
it can also adapt to its proactive behavior. This ap-
proach is similar to the stable sub-groups presented
in [26].
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Fig. 5. The average frequency of activation of the scheduler with ten LOD levels (blue) and a round-robin scheme (red)

The maximum number of controlled agents depends
on the LOD such that nearby agents have to act in-
dependently, whereas distant ones group together.
When a superior agent controls more than the max-
imal number specified it releases all inferior agents.
Again, these will reapply for a control take-over but
only some of the previously controlled agents will
be accepted. When an agent controls the maximum
number of agents, it rejects all further requests. Ad-
ditionally, the superior agent can decide to release
the controlled agents when enough time is available
such that the agents can plan independently again. If
a controlling agent’s time decreases, it can also pass
the control to its superior agent, which will then take
care of the agent itself and all its controlled agents.
The emerging effect is that groups far away can plan
as though they were only a few agents. When near
the camera, the control is first split up such that
several subgroups can plan until each agent acts indi-
vidually. This situation is depicted in Fig. 6, in which
several groups of agents are placed at different dis-
tances from the camera. In the foremost herd, nearly
all of the agents act autonomously, whereas the most
distant group is controlled by only a few of the top-
level agents as shown in Fig. 6d.

4.4 Reactive behavior

As mentioned above, the reactive behavior is neces-
sary for maintaining a character’s correct state. For

example, the reactive system avoids nearby lakes so
that agents don’t walk into the water or the agent
flees when an enemy is nearby. Our reactive sub-
system is based on the simulation engine described
in [25] with slight adaptations.
Figure 7 shows the procedure for determining a pos-
sible reaction: Each agent has several situations that
can be recognized. These situations are tested and the
one that returns the highest probability, for example
the recognition of an enemy, is asked to provide an
appropriate reaction. Therefore, each situation holds
several different possible actions and returns the ac-
tion that should best resolve the current situation, for
example escaping an enemy. This reaction is more
important than any other action currently executed
and is therefore placed on top of the current action
queue. Our action system can only handle one reac-
tion at a time, which is immediately executed.
Every action – including reactions – can only start
when its preconditions hold and can only end when
either the postconditions have been reached or
the duration has been exceeded. After having re-
solved this situation, the previously active action is
restarted. In order to avoid an endless loop, an action
can only be restarted a limited number of times.
The number of available situations can also depend
on the LOD. For example, avoiding a tree might be
necessary when an agent is (nearly) visible but not
when it is out of sight. Using this mechanism, we can
further speed up unimportant agents.
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a b

c d

Fig. 6. The hierarchical control. a View from the camera perspective. Yellow agents act individually, blue agents are control-
ling and red agents are being controlled. b, c Top views showing camera view frustum and classification at different levels. d
View from the opposite direction. Only a few agents act individually while most act controlled

4.5 Motivational behavior

In order to allow proactive behavior, a goal descrip-
tion is needed. We can imagine that a character may
have different goals at different times. In our setup,
one goal, at most, is active. By using this goal, the
planning algorithm described in the next section can
evaluate different states in its search space and select
the best one. The process of selecting an appropriate
goal takes place in the motivational unit.
Each agent has a set of goals that are initially inac-
tive. The motivational unit regularly addresses each
goal and asks for a value that describes the need to
activate it. The goal that returns the highest value is
then selected. If the current goal changes it has to
be reinitialized. In order to prevent the agent from
switching too fast between different goals, this pro-

cess has a much lower frequency than the reactive
system.

4.6 Proactive behavior

After having selected a goal, future states have to be
exploited to approach the goal. To that end, we need
a planning mechanism that explores possible states
that could be reached to find the currently – hence lo-
cally – best sequence of actions for reaching a goal.
The number of possible actions and the depth of the
search determine its complexity. Obviously, all avail-
able time can be spent on planning. However, since
time is restricted and more than one agent is able to
plan, the need for an interruptible planning mech-
anism arises. Furthermore, the environment is dy-
namic, which means that currently viable plans can
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Fig. 7. The reactive behavior results from selecting the current situation and an appropriate action

be worthless within a few moments. By integrating
multiple other agents into the planning process, this
problem becomes even more difficult to handle.
In this section, we first present the selection of an
appropriate planning algorithm before dealing with
concurrent planning algorithms. Secondly, we ad-
dress issues concerning the dynamic environment.

4.7 Planning

Not every planning algorithm suits our problem.
Since we plan in an open environment, the space of
possible states to reach is infinite. We need to find
a sequence of actions that leads to a good or even the
best possible state.
Planning algorithms can be divided into two cate-
gories: noninformed and informed. The former do
not know anything about the value or cost of an
action and perform a blind search. The latter has
problem-specific knowledge, therefore, they can di-
rectly search for the goal state, and are usually faster.
Informed search algorithms are, for example, the
greedy search, uniform-cost search, and also A* [13,
29]. The disadvantage of informed search algorithms
is that they need an evaluation function and possibly
even a heuristic function to determine the prospect
of success for each action. This function is not al-
ways available or can be very hard to formulate. For
purely geometrical problems (e.g., local path plan-

ning) these functions might be available. Since we do
not want to restrict our agents to such problems, we
are using an uninformed search. Examples for such
algorithms include breadth-first, depth-first, or lim-
ited depth-first [29].
Our system uses the iterative deepening algorithm
(IDA) [29] to search the space of possible states.
This algorithm starts with a maximal depth of one
and increases this depth after having explored all
states within this depth in a depth-first order. There-
fore, it can determine at every moment the current
best sequence and will find the optimal sequence if
it is reachable with the current depth of steps. Addi-
tionally, the more time available, the better the plan
becomes and the quality of the plan increases mono-
tonically.

4.8 Concurrency

Inspired by the class of anytime algorithms [5, 12],
the iterative deepening algorithm is adapted to our
needs. Anytime algorithms are interruptible and the
more time they get, the better the result becomes.
By using such an algorithm, we could stop planning
when time is up and continue later to enhance the
intermediate result. Additionally, we can allow dif-
ferent agents to plan concurrently as shown in Fig. 8.
As the result is time-dependent, its quality directly
depends on the LOD of the current agent.
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Fig. 8. About twenty elephants acting proactively at the same time. The yellow lines visualize their best current plan

Concurrency can be easily achieved by using threads,
however, the drawback is that an external mechanism
is necessary for interrupting the threads according
to their time budget. In our system, we would like
to stop planning when the time budget has been ex-
hausted. Therefore, our search algorithm carries out
small steps until the time is up. After each step, the
planner asks the algorithm about the current score
of its progress. If the score is higher than it had
previously been, the algorithm has found a better se-
quence. The planner then updates the current action
for the agent to immediately execute the better plan.

4.9 Concurrent IDA

In order to achieve a concurrent IDA, we have to split
up the algorithm into single steps that can be car-

ried out individually and be performed sequentially
as the original IDA. In our approach, one step in the
concurrent IDA consists of either finding a possible
action and executing it, recursively going back one
level in the search space, or restarting after having
reached the current depth limit.
The algorithm first looks for the next possible ac-
tion in the current state. If there is one action that
can be used, the algorithm will call a method that ex-
ecutes this action for a specified time in the search
space. After having successfully executed the current
action, there might be some other agents involved
in the planning process. Our planning system allows
for considering other agents using a reactive model.
That means we simulate these involved agents with-
out considering their planning abilities, which would
require some algorithm related to αβ-pruning [29].
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Of course, this model is not perfect and cannot guar-
antee that the participating agents do exactly what
has been expected.
If there is no action that can be executed in the cur-
rent search state, the algorithm has to backtrack in
order to find another action on a lower level which
might allow for further planning. Therefore, the al-
gorithm goes back one step and executes the next
possible action on that level. This implies the usage
of a stack that stores the current state on each level.

4.10 Dynamic environment

Planning in a dynamic environment is not straight-
forward [2]. We have to consider different aspects:

1. We have to avoid cycles such that deadlocks do
not occur.

2. Since there is no undo method for every possible
action, we have to find a way to restore previously
searched states.

3. The dynamic environment is expected to change
during the planning process. Therefore, the agent
might plan on outdated information.

4. We have to plan in the spatio-temporal space and,
therefore, consider the timely behavior.

Each goal provides a method to test whether a state
has already been visited or not. In the current im-
plementation, we only test for already visited places
while neglecting any other information. Therefore,
an agent cannot plan back to a previous searched
location, even if there was some other action than
moving in between, e.g., picking up some food.
To resolve the problem with the undo method, we
proceed as follows: every time the algorithm selects
an action to carry out, it stores the current state of
the agent and the agents included in the search on
a stack. When returning to this search-state to try an-
other action, the states are restored from the stack.
As stated above, the dynamic environment forces
the agent to regularly restart planning from scratch.
Since the generation of a plan can last as long as
possible, we need a method for determining whether
planning can be continued or if a restart is necessary.
This decision depends on the time spent on planning,
the changes in the environment, and the state of ex-
ecution of the current plan. The first criterion can be
handled easily: we set a maximal planning time after
which a restart is forced. To gain information about
the state of execution, we check if the currently ex-
ecuted action is the last one of the current plan and

we also force the planner to restart. Determining the
amount of changes in a dynamic environment is not
straightforward. We expect this to mainly depend on
the number of other agents involved in the planning
process. Therefore, the maximal planning time for
the first criterion is divided by the number of par-
ticipating agents. This mechanism has proven to be
sufficient for our environment.
In order to act in the spatio-temporal space, each
planner-action is “executed” for a certain time inter-
val. This time interval is passed as a parameter and
the action predicts the outcome as if it were executed
for this amount of time. With this method, we can
better adjust the planning process to the dynamic en-
vironment because it allows for adaptive steps. We
use it such that the first steps are smaller whereas
later steps get larger. Thus, each algorithm has a base
time step tbase and the actual step length is

tact = tbase ·ad, with a > 1 , (9)

where d denotes the current depth of the search.
Therefore, the steps will get longer, as we advance
into the future. Intuitively, such states are doubtful
anyway, but larger steps may also help to find out of
local minima. The result is shown in Fig. 8 in which
red points denote the start- and end-points of the cur-
rently executed actions of a plan.

5 Results and discussion

We tested our approach with two different scenar-
ios on a Pentium IV 2.6 GHz computer equipped
with 2 GB of RAM and an ATI Radeon 8500 graph-
ics board.
First, we compared the achieved framerate at differ-
ent values of T . We set up a scenario containing 1700
agents with purely reactive behavior in which each
agent takes approximately 0.02 ms. Therefore, the
total amount of time needed to simulate all agents
would be around 34 ms which is too much to achieve
interactive framerates. Table 1 shows the accord-
ing results. The top three rows denote cases where
almost all agents have been simulated during one
cycle. Therefore, the resulting behavior is perfect
with respect to the applied rules. The resulting be-
havior still looks accurate up to values around 5
to 20 ms. When only one millisecond is available,
the activation frequencies of the agents are too low
and their behavior becomes erroneous – especially
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Fig. 9. Framerate depending on the number of full planning agents. In this scenario, all agents are allowed to generate a full
plan of three (blue) or four (red) steps ahead in every step. Thus, the framerate drops rapidly for a large number of agents. The
green line depicts the same situation but using the priority-queue scheduling algorithm. Here, the framerate does not drop
below 20 frames per second except because of the increased rendering cost

Table 1. Frame-rates achieved by restricting the total available
time for simulation

T [ms] Framerate [fps]

50 15
40 17
30 19
20 25
10 34

5 43
1 50

when turning around the camera fast. When we sim-
ulate too many agents concurrently and the total
available time is too short, the frequency of each
agent drops, therefore, the purely reactive behavior
gets worse due to undersampling. This can be ob-
served when the camera is allowed to move or turn
rather fast. Hence, the LOD and scheduling setup
frequency should depend on the movement and rota-

tion of the camera, which is not yet implemented but
feasible.
A second scenario provides the framerate depending
on the number of agents when all agents are allowed
to perform a full planning on every step as shown in
Fig. 9. Thus, all agents always have a plan that con-
tains either three (blue line) or four (red line) steps.
The green line shows the according framerate with
our priority-queue scheduling algorithm. Here, even
for larger crowds, the framerate does not drop signif-
icantly below 20 frames per second, except that the
rendering cost increase.
The third scenario compares the observed proactive
behavior in different setups. A scene with 500 dis-
tributed proactive agents is simulated and the results
are denoted in Table 2 and screenshots are depicted
and explained in Fig. 10. When the total available
time is set to 5 ms, we cannot see any proactive be-
havior when looking at the full scene. However, the
more the number of visible agents scales down, the
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a b

c d

e f

Fig. 10. Screenshots of the second test scenario with 400 agents trying to act proactively. Only 5 ms are available for a–c and
10 or 15 ms for d–f. a The overview presents no proactive behavior since many agents are visible and the time available for
each is too low for planning to begin. b The same scene but only five percent of the agents are visible. Therefore, they get
more time and start planning although the system still simulates all other agents regularly. c When only 100 agents populate
the world, they start planning even in a scene overview. d At 10 ms available, some agents start planning even in a scene-
overview. Here, approximately half of the agents are visible. e The same scene as before but only a fourth of the agents are
visible. Therefore, more agents start planning. f With 15 ms available most agents in the foreground act proactively and even
some distant ones follow their goals
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Table 2. Comparing the resulting behavior in different setups. The frame-rate (FR) is independent of the number of proactive agents.
v: visible, nv: nearly visible, iv: invisible

T FR (v/nv/iv) Observed behavior
[ms] [fps] [%]

5 56 40 / 20 / 40 No proactive behavior, all reactive
5 56 10 / 20 / 70 Some agents in the foreground act proactively, but most agents remain reactive only
5 56 5 / 5 / 90 Most visible agents act proactively, when turning the camera, some agents already act

proactively, others start to do so
10 43 40 / 20 / 40 When overlooking the scene, most agents in the foreground act proactively while agents in the

middle ground and background remain reactive
10 43 10 / 20 / 70 All visible agents act proactively, even those entering the scene and when moving the camera
15 33 40 / 20 / 40 All agents in the forefront are proactive, most in the middle ground, too, while the ones in the

background are reactive

more visible agents become proactive and start plan-
ning. When this fraction decreases even more, the
nearly visible agents also start planning, which is ob-
served when moving or turning the camera. A value
of 10 or 15 ms increases this effect even more. When
approximately half the agents are visible, most of the
agents in the foreground act proactively. For smaller
fractions of visible agents, all visible ones are plan-
ning even the nearly visible ones entering the scene
and when turning the camera. But, of course, the
framerate drops to a lower level.
Furthermore, the lack of determinism seems to be
a drawback since there is no single predefined thread
that can be followed. But we think that our system is
rather well-suited for secondary characters populat-
ing the world whose appearance and behavior is not
directly linked to a storyboard. It enhances the world
by making it unique in a sense of unpredictability.

6 Conclusions and future work

We have presented a system that allows for the
simulation of large numbers of characters in a real-
time environment. The behavior of these charac-
ters depends on their level-of-detail, which means
that nearby agents present more sophistication than
distant or invisible – or even both – characters.
The system allows for smooth transitions from
purely reactive to proactive behavior by using an
advanced scheduling algorithm and time-accounts
for each agent. Additionally, hierarchical structures
within groups are used to further break down the
complexity of behavioral simulation by restricting

proactive behavior to higher-level agents within the
group.
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