Skip to main content
Log in

Increasing the predictability of tissue subsurface scattering simulations

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Models of light interaction with matter usually rely on subsurface scattering approximations based on the use of phase functions – notably, the Henyey-Greenstein phase function and its variations. In this paper, we challenge the generalized use of these approximations, especially for organic materials, and propose the application of a data-oriented approach whenever reliable measured data is available. Our research is supported by comparisons involving the original measured data that motivated the use of phase functions in algorithmic simulations of tissue subsurface scattering. We hope that this investigation will help strengthen the biophysical basis required for the predictable rendering of organic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson RR, Parrish JA (1981) The optics of human skin. J Invest Dermatol 77(1):13–19

    Article  Google Scholar 

  2. Arvo JR (1995) Analytic methods for simulated light transport. Dissertation, Yale University

  3. Arvo JR (1995) Applications of irradiance tensors to the simulation of non-lambertian phenomena. In: SIGGRAPH, Annual Conference Series, pp 335–342

  4. Baranoski GVG, Krishnaswamy A, Kimmel B (2003) Revisiting the foundations of subsurface scattering. Technical Report CS-2003-45, School of Computer Science, University of Waterloo

  5. Baranoski GVG, Rokne JG (2004) Light interaction with plants: a computer graphics perspective. Horwood, Chichester

    Google Scholar 

  6. Bruls WAG, van der Leun JC (1982) The use of diffuser in the measurement of transmission of human epidermal layers. Photochem Photobiol 36(6):709–713

    Article  Google Scholar 

  7. Bruls WAG, Slaper H, van der Leun JC, Berrens L (1984) Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths. Photochem Photobiol 40(4):485–494

    Article  Google Scholar 

  8. Bruls WAG, van der Leun JC (1984) Forward scattering properties of human epidermal layers. Photochem Photobiol. 40(2):231–242

    Google Scholar 

  9. Chedekel MR (1995) Photophysics and photochemistry of melanin. In: Chedekel MR, Zeise L, Fitzpatrick TB (eds) Melanin: its role in human photoprotection. Valdenmar, Overland Park, pp 11–22

  10. Cotton SD (1997) A noninvasive skin imaging system. Technical Report CSR-97-03, School of Computer Science, The University of Birmingham

  11. Dana KJ, van Ginneken B, Nayar SK, Koenderink JJ (1999) Reflectance and texture of real world surfaces. ACM Trans Graph 18(1):1–34

    Article  Google Scholar 

  12. Dunn A, Richards-Kortum R (1996) Three-dimensional computation of light scattering from cells. IEEE Select Topics Quantum Electron 2(4):898–905

    Article  Google Scholar 

  13. Flock ST, Patterson MS, Wilson BC, Wyman DR (1989) Monte Carlo modeling of light propagation in highly scattering tissues – I: Model predictions and comparison with diffusion theory. IEEE Trans Biomed Eng 36(12):1162–1168

    Article  Google Scholar 

  14. Furutso K (1980) Diffusion equation derived from space-time transport equation. J Opt Soc Am 70(4):360–366

    Article  Google Scholar 

  15. Glassner AS (1995) Principles of digital image synthesis. Kaufmann, San Francisco

  16. Govaerts YM, Jacquemoud S, Verstraete M, Ustin SL (1996) Three-dimensional radiation transfer modeling in a dycotyledon leaf. Appl Opt 35(33):6585–6598

    Article  Google Scholar 

  17. Greenberg DP, Arvo J, Lafortune E, Torrance KE, Ferwerda JA, Walter B, Trumbore B, Shirley P, Pattanaik S, Foo S (1997) A framework for realistic image synthesis. In: SIGGRAPH, Annual Conference Series, pp 477–494

  18. Hanrahan P, Krueger W (1993) Reflection from layered surfaces due to subsurface scattering. In: SIGGRAPH, Annual Conference Series, pp 165–174

  19. Henyey LG, Greenstein JL (1941) Diffuse radiation in the galaxy. Astrophys J 93:70–83

    Article  Google Scholar 

  20. Imai FH, Tsumura N, Haneishi H, Miyake Y (1996) Principal component analysis of skin color and its application to colorimetric reproduction on CRT display and hardcopy. J Image Sci Technol 40(5):422–430

    Google Scholar 

  21. Ishimaru A (1997) Wave propagation and scattering in random media, volume 1, 2nd edn. IEEE Press, New York

  22. Jacques SL, Alter CA, Prahl SA (1987) Angular dependence of HeNe laser light scattering by human dermis. Lasers Life Sci 1(4):309–333

    Google Scholar 

  23. Jensen HW, Buhler J (2002) A rapid hierarchical rendering technique for translucent materials. In: SIGGRAPH, Annual Conference Series, pp 576–581

  24. Jensen HW, Legakis J, Dorsey J (1999) Rendering of wet materials. In: Lischinski D, Larson GW (eds) Rendering Techniques 1999, Proceedings of the 10th Eurographics Rendering Workshop, Granada. Springer, Berlin Heidelberg New York, pp. 281–289

  25. Jensen HW, Marschner SR, Levoy M, Hanrahan P (2001) A practical model for subsurface light transport. In: SIGGRAPH, Annual Conference Series, pp 511–518

  26. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, Berlin Heidelberg New York

  27. Kattawar GW (1975) A three-parameter analytic phase function for multiple scattering calculations. J Quant Spectrosc Radiat Transfer 15:839–849

    Article  Google Scholar 

  28. Krishnaswamy A, Baranoski GVG (2004) A biophysically based spectral model of light interaction with human skin. In: Computer Graphics Forum (EUROGRAPHICS Proceedings) 23(3):331–340

  29. Krishnaswamy A, Baranoski GVG, Rokne JG (2004) Improving the reliability/cost ratio of goniophotometric measurements. J Graph Tools 9(3):31–51

    Article  Google Scholar 

  30. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147

    Article  MathSciNet  Google Scholar 

  31. Lalonde P, Fournier A (1997) Generating reflected directions from BRDF data. In: Computer Graphics Forum (EUROGRAPHICS Proceedings) 16(3):293–300

  32. Li Z, Fung AK, Tjuatja S, Gibbs DP, Betty CL, Irons JR (1996) A modeling study of backscattering from soil surfaces. IEEE Trans Geosci Remote Sens 34(1):264–271

    Article  Google Scholar 

  33. Ma Q, Nishimura A, Phu P, Kuga Y (1990) Transmission, reflection and depolarization of an optical wave for a single leaf. IEEE Trans Geosci Remote Sens 28(5):865–872

    Article  Google Scholar 

  34. Marschner SR, Westin SH, Lafortune EPF, Torrance KE, Greenberg DP (1999) Image-based BRDF measurement including human skin. In: Lischinski D, Larson GW (eds) Rendering Techniques 1999, Proceedings of the 10th Eurographics Rendering Workshop, Granada. Springer, Berlin Heidelberg New York, pp 119–130

  35. Matusik W, Pfister H, Brand M, McMillan L (2003) A data-driven reflectance model. ACM Trans Graph 22(3):759–769

    Article  Google Scholar 

  36. Mourant JR, Freyer JP, Hielscher AH, Eick AA, Shen D, Johnson TM (1998) Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl Opt 37(16):3586–3593

    Article  Google Scholar 

  37. Ng CS, Li L (2001) A multi-layered reflection model of natural human skin. In: Computer Graphics International 2001, Hong Kong, pp 249–256

  38. Nicodemus FE, Richmond JC, Hsia JJ, Ginsberg IW, Limperis T (1992) Geometrical considerations and nomenclature for reflectance. In: Wolff LB, Shafer SA, Healey GE (eds) Physics-based vision principles and practice: radiometry. Jones and Bartlett, Boston, pp 94–145

  39. Parsad D, Wakamatsu K, Kanwar AJ, Kumar B, Ito S (2003) Eumelanin and phaeomelanin contents of depigmented and repigmented skin in vitiligo patients. Br J Dermatol 149(3):624–626

    Article  Google Scholar 

  40. Petersen GD, McCormick NJ, Reynolds LO (1976) Transport calculations for light scattering in blood. Biophys J 16:199–207

    Article  Google Scholar 

  41. Pharr M, Hanrahan P (2000) Monte Carlo evaluation of non-linear scattering equations for subsurface reflection. In: SIGGRAPH, Annual Conference Series, pp 75–84

  42. Prahl SA (1988) Light transport in tissue. Dissertation, The University of Texas at Austin

  43. Prahl SA, Keijzer M, Jacques SL, Welch AJ (1989) A Monte Carlo model of light propagation in tissue. SPIE Institute Series IS 5:102–111

    Google Scholar 

  44. Premoze S, Ashikhmin M, Shirley P (2003) Path integration for light transport in volumes. In: Christensen P, Cohen-Or D (eds) Eurographics Symposium on Rendering, pp 75–84

  45. Reynolds LO, McCormick NJ (1980) Approximate two-parameter phase function for light scattering. J Opt Soc Am 7(10):1206–1212

    Article  Google Scholar 

  46. Sardar DK, Levy LB (1998) Optical properties of whole blood. Lasers Med Sci 13(2):106–111

    Article  Google Scholar 

  47. Shimada M, Yamada Y, Itoh M, Yatagai T (2001) Melanin and blood concentration in human skin studied by multiple regression analysis: experiments. Phys Med Biol 46(9):2385–2395

    Article  Google Scholar 

  48. Stam J (2001) An illumination model for a skin layer bounded by rough surfaces. In: Hanrahan PM, Purgathofer E (eds) Rendering Techniques 2001, Proceedings of the 12th Eurographics Rendering Workshop, London. Springer, Berlin Heidelberg New York, pp 39–52

  49. Steinke JM, Shepherd AP (1988) Diffusion model of the optical absorbance of whole blood. J Opt Soc Am 5(6):813–822

    Article  Google Scholar 

  50. Tessendorf J, Wilson D (1994) Impact of multiple scattering on simulated infrared clod scene images. In: Christensen P, Cohen-Or D (eds) Characterization and propagation of sources and backgrounds. SPIE, Bellingham, pp 75–84

  51. Thody AJ, Higgins EM, Wakamatsu K, Ito S, Burchill SA, Marks JM (1991) Pheomelanin as well as eumelanin is present in human dermis. J Invest Dermatol 97(2):340–344

    Article  Google Scholar 

  52. Tsumura N, Ojima N, Sato K, Shiraishi M, Shimizu H, Nabeshima H, Akazaki S, Hori K, Miyake Y (2003) Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin. ACM Trans Graph 22(3):770–779

    Article  Google Scholar 

  53. Tuchin V (2000) Tissue optics light scattering methods and instruments for medical diagnosis. SPIE, Bellingham

  54. Tucker CJ, Garrat MW (1977) Leaf optical system modeled as a stochastic process. Appl Opt 16(3):635–642

    Article  Google Scholar 

  55. Uesugi A, Irvine WM, Kawata Y (1971) Formation of absorption spectra by diffuse reflection from a semi-infinite planetary atmosphere. J Quant Spectrosc Radiat Transfer 11:797–808

    Article  Google Scholar 

  56. van de Hulst HC (1980) Multiple light scattering: tables, formulas, and applications, volume 1. Academic Press, New York

    Google Scholar 

  57. van de Hulst HC (1981) Light scattering by small particles, 2nd edn. Dover, New York

  58. van Gemert MJC, Jacques SL, Sterenborg HJCM, Star WM (1989) Skin optics. IEEE Trans Biomed Eng 36(12):1146–1154

    Article  Google Scholar 

  59. Vrhel MJ, Gershon R, Iwan LS (1994) Measurement and analysis of object reflectance spectra. Color Res Appl 19(1):4–9

    Google Scholar 

  60. Ward GJ (1992) Measuring and modeling anisotropic reflection. In: Computer Graphics, SIGGRAPH Proceedings, pp 265–272

  61. Wilson BC, Adam G (1983) A Monte Carlo model for the absorption and flux distributions of light in tissue. Med Phys 10(6):824–830

    Article  Google Scholar 

  62. Witt AN (1977) Multiple scattering in reflection nebulae. I. a Monte Carlo approach. Astrophys J Suppl Ser 15(1):1–6

    Article  Google Scholar 

  63. Yoon G, Prahal SA, Welch AJ (1989) Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media. Appl Opt 28(12):2250–2255

    Article  Google Scholar 

  64. Yoon G, Welch AJ, Motamedi M, van Gemert MCJ (1987) Development and application of three-dimensional light distribution model for laser irradiated tissue. IEEE J Quantum Electron QE-23:1721–1733

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranoski, G., Krishnaswamy, A. & Kimmel, B. Increasing the predictability of tissue subsurface scattering simulations. Vis Comput 21, 265–278 (2005). https://doi.org/10.1007/s00371-005-0288-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-005-0288-0

Keywords

Navigation