Visual Comput (2005) 21: 698—706
DOI 10.1007/s00371-005-0323-1

Kyuman Jeong
Alex Ni

Seungyong Lee
Lee Markosian

Published online: 1 September 2005
© Springer-Verlag 2005

K. Jeong () - S. Lee

Department of Computer Science and
Engineering, POSTECH, Pohang, 790-784,
Korea

{misterq,leesy} @postech.ac.kr

A. Ni- L. Markosian
Department of Electrical Engineering and

ORIGINAL ARTICLE

Detail control in line drawings of 3D meshes

Abstract We address the problem
of rendering a 3D mesh in the style
of a line drawing, in which little or
no shading is used and instead shape
cues are provided by silhouettes and
suggestive contours. Our specific
goal is to depict shape features

at a chosen scale. For example,
when mesh triangles project into the
image plane at subpixel sizes, both
suggestive contours and silhouettes
may form dense networks that
convey shape poorly. The solution we
propose is to convert the input mesh

then view-dependently refine or
coarsen the mesh to control the
size of its triangles in image space.
We thereby control the scale of
shape features that are depicted via
silhouettes and suggestive contours.
We propose a novel refinement
criterion that achieves this goal and
address the problem of maintaining
temporal coherence of silhouette and
suggestive contours when extracting
them from a changing mesh.

Keywords Nonphotorealistic

Computer Science, University of Michigan
at Ann Arbor, Ann Arbor, MI 48109, USA
{alexni,sapo} @umich.edu

1 Introduction

Nonphotorealistic rendering (NPR) has emerged as an
alternative to the traditional holy grail of 3D computer
graphics: to produce images that are as realistic as pos-
sible. An important goal of NPR is to produce images
that are comprehensible—they communicate information
about shape effectively. The simplest kind of NPR is a line
drawing, in which little or no shading is used, and instead
just a few strokes are drawn along important shape fea-
tures. Line drawings are important in many applications
where a simple, clear rendering is preferred, and they often
serve as the basis for more complicated styles as well.
Silhouettes (also known as contours) and sharp fea-
tures are widely considered to be good candidate loca-
tions for strokes [7]. Recently, suggestive contours [1,2]
have been proposed to provide additional cues about shape
with relatively few additional strokes. However, one ques-
tion has been largely overlooked: how to generate strokes

to a multiresolution representation
(specifically, a progressive mesh),

rendering - Line drawing -
Level-of-detail - Progressive mesh

that provide cues about surface shape at an appropriate
scale. For example, consider rendering a terrain that in-
cludes nearby surfaces as well as hills and mountains in
the distance. If every silhouette and suggestive contour
is included, their density over distant surfaces would be
so great that it would destroy our ability to perceive any
details there. The problem is that features can exist at mul-
tiple scales, and we want to omit those that are too small
(or large) to be conveyed effectively by a line in image
space.

The solution we propose is to convert the mesh to
a continuous level-of-detail representation (specifically,
a progressive mesh [5]), then dynamically adjust the mesh
resolution at runtime so that triangle sizes are controlled
in image space. The result is that we control the scale
of shape features, e.g., to achieve a uniform level of de-
tail across the image, or to manipulate detail according to
some arbitrary “detail map.” We propose a novel refine-
ment criterion that achieves this goal and a strategy for
maintaining temporal coherence of suggestive contour and

Detail control in line drawings of 3d meshes 699

silhouette paths when extracting them from a changing
mesh.

2 Related work

Most NPR renderers of 3D models address level of detail
in some way. Winkenbach and Salesin [18, 19] describe al-
gorithms to render 3D scenes in the style of pen and ink
drawings, using “prioritized textures” to control the result-
ing level of detail. Praun et al. [13] and Webb et al. [16]
describe a way to efficiently render hatching strokes on
3D models, varying the density of strokes to account for
changes in camera and lighting. The procedural “graftal
textures” of Kowalski et al. [9] and Markosian etal. [11]
view-dependently generate 3D elements that suggest styl-
ized leaves, tufts of fur, bumps, and so on, with a con-
trolled level of detail. Deussen and Strothotte [3] present
a related method for rendering trees in a pen and ink style
with a user-selectable degree of abstraction. The more ab-
stract renderings resemble low-detail sketches.

While the above systems rely on procedural models
that generate detail as needed, Grabli et al. [4] and Wilson
and Ma [17] both describe systems that render arbitrary
complex geometry (i.e., meshes) with control over stroke
density and visual “clutter.” Both systems combine 3D op-
erations with 2D image processing to detect regions of vi-
sual complexity (e.g., dense silhouettes) and remove detail
where it exceeds a threshold. Both systems require sig-
nificant processing time, and neither addresses temporal
coherence. While these systems do address the problem of
controlling stroke density in image space, neither specific-
ally addresses the problem of depicting shape features at
a desired scale in image space.

Kirsanov et al. [8] propose a method for extracting
“simple silhouettes” from dense meshes based on first
extracting the silhouette from a simplified version of the
mesh. Their goal is different from ours: they do not ad-
dress the problem of detecting silhouettes at a controlled
scale in image space or of achieving interactive rates and
temporal coherence of extracted lines.

Most closely related to our work is another paper we
have written that addresses the same problem using a dif-
ferent approach [12]. The method we propose in that paper
is to first generate from the original mesh a sequence of
smoothed meshes (with the same connectivity) with pro-
gressively larger shape features removed. At runtime, for
each vertex we compute an interpolated position and cur-
vature from two corresponding vertices in the mesh se-
quence, depending on the desired feature scale. Because
of its relative simplicity, this method can be implemented
entirely on the GPU, and so is quite fast (e.g., 70 fps for
a 400,000-polygon model on the same test machine used
here). It effectively controls the scale of depicted shape
features and, because mesh connectivity does not vary
across detail levels, achieves a high degree of temporal co-

herence. An important limitation is that multiple versions
of the original mesh (smoothed at different scales) must be
stored simultaneously. As a result, it does not scale well as
more levels of detail are added and larger meshes are used
(e.g., in the case of large terrain datasets). The method we
describe in this paper theoretically scales much better in
these cases. It still provides effective control over the scale
of depicted features and reasonably good temporal coher-
ence, despite actively changing mesh connectivity.

3 Our approach

Our high-level goal is to provide a general means of con-
trolling the scale of features depicted in an image. For
instance, the rendering might be controlled by a “detail
map” according to which one object (some background
scenery) is rendered with significantly less detail than an
object of interest (e.g., the central character in a story).

In signal processing terms, we seek to band-limit a
“signal” (i.e., the shape) and control our sampling (i.e.,
the mesh) of that signal accordingly. We can achieve an
approximation of this by smoothing and simplifying the
mesh. Then, a coarser mesh will yield a line drawing that
depicts coarser-scale features and a finer mesh will yield
finer-scale features. We achieve this using a progressive
mesh scheme, as we describe next.

3.1 Progressive mesh refinement criterion

To dynamically control the mesh resolution, we use
the view-dependent refinement scheme for progressive
meshes described by Hoppe [6]. Progressive meshes pro-
vide mesh decimation and smoothing via edge collapse
operations and mesh refinement via vertex splits. The de-
cision of when to invoke each type of operation is made
according to a criterion, i.e., afunction that evaluates
a vertex and returns true if the vertex should be split and
false if its child edge (in the progressive mesh hierarchy)
should be collapsed.

The original goal for view-dependent refinement of
progressive meshes was to improve rendering speed by
reducing geometric detail while minimizing perceptible
error in the rendered image. Thus the criterion proposed
by Hoppe acts to refine the mesh only where its image
space deviation from the original model exceeds a thresh-
old.

Our goal is different. We thus propose a criterion that
acts to refine the progressive mesh only where its trian-
gles exceed a target size in image space.! More specific-
ally, our criterion returns “true” for a vertex if the average
size of triangles in its 1-ring exceeds the target size (in

I'We could have based our criterion on edge length instead. Either formu-
lation effectively captures the notion of feature scale.

700 K. Jeong et al.

image space) by a given threshold. The result is to promote
uniform triangle sizes in 2D or, more generally, trian-
gle sizes that can vary in 2D according to a given detail
map.

We map a given 3D area A, located some distance d
from the camera, to the corresponding image space area
Ajng (ignoring foreshortening due to orientation) as fol-
lows. For perspective projection, Aj,, = kA /d?, where k
is a scaling factor determined by the image and camera pa-
rameters (e.g., field of view). For orthographic projection,
Aimg =kA.

Hoppe’s criterion for evaluating a vertex depends only
on the vertex itself (its position) and precomputed constant
values associated with the vertex. Our criterion, however,
depends on the average triangle size around the vertex,
which increases with each edge collapse operation, and
decreases with each vertex split operation. We thus need
two thresholds: #. < 1 and #; > 1. Denoting the target area
by T, we invoke an edge collapse when the average trian-
gle area around a vertex falls below 7.7 and a vertex split
when the area exceeds #;T. To avoid a cycle where a col-
lapse immediately triggers the reverse (split) operation,
the two thresholds must be sufficiently separated.

In general, the average triangle area around a vertex
can increase arbitrarily during an edge collapse. In prac-
tice, however, we observe that the increase tends to stay
well below a factor of 2. We thus require that 2¢, < ;. Tak-
ing t.t; ~ 1 for symmetry, we therefore need 7, < 1/+/2
and #; > +/2. We use 7, = 0.7 and ¢, = 1.42, which in our
observations is sufficient to prevent cycles.

Alternatively, we could use a strategy similar to Hoppe’s
and precompute the area around each vertex at different
levels of the progressive mesh hierarchy. This would elim-
inate the dependency of the refinement criterion on the
neighborhood of each vertex, and so prevent cycles. We
intend to investigate this strategy in future work.

3.2 Temporal coherence of geometry

Edge collapse and vertex split operations lead to abrupt
visual changes (“popping”). To address this, Hoppe intro-
duced geomorphs [6], which interpolate the shape of one
progressive mesh approximation to another over a short
period of time. Hoppe’s method prevents sudden changes
in the shape of the mesh, but it is restrictive—it gener-
ates a sequence of intermediate meshes between an initial
and final configuration, and no further changes may be
initiated until the final configuration is reached. This is
not well-suited to a real-time system under interactive user
control.

To solve this problem, we introduce a new type of pro-
gressive mesh geomorph called a real-time geomorph. In-
stead of morphing the entire mesh between an initial and
final configuration, we morph individual parts indepen-
dently and concurrently. That is, in any frame, new geo-

morphs may be initiated while others, already in progress,
either continue or complete their transitions.

When an edge collapse is invoked, instead of directly
performing the operation, each of the edge’s vertices are
temporarily “locked,” so that no further operations that di-
rectly involve them may be initiated. The vertices are then
moved over a transition period to meet at the position of
the edge’s parent. When the vertices meet, the logical edge
collapse operation is executed, and the vertices are un-
locked.

Whenever a vertex split operation is invoked, the log-
ical vertex split is performed immediately, but the child
vertices are initially positioned at their parent (the source
of the split). The children then move over the transition
period to their final positions and are unlocked upon com-
pletion.

The result is that level-of-detail changes in the mesh
happen continuously, but adelay is introduced. If the
viewpoint changes rapidly, the displayed progressive mesh
configuration may lag significantly behind the desired one.
We address this by increasing the speed of the interpo-
lation based on the discrepancy between the current and
target areas associated with each vertex. Increasing the
speed of the geomorphs does reduce the perceived co-
herence of mesh transitions, but this happens only for
rapid view changes, when coherence is difficult to no-
tice.

3.3 Temporal coherence of suggestive contours

Though real-time geomorphs prevent sudden changes in
the shape of the mesh, suggestive contours extracted from
the mesh can still change abruptly. The reason is that with
geomorphs, vertex locations change smoothly but their
connectivity does not—and suggestive contours extracted
from meshes depend on an approximation of curvature,
which in turn depends on both vertex locations and con-
nectivity [14]. We could try to avoid this dependency by
using “exact” curvature (from the original shape) or cur-
vature computed over the original mesh, but neither would
be useful in depicting shape features at a desired scale.
Instead we need a notion of “curvature at a scale.” In prac-
tice, if the mesh triangle size is controlled appropriately,
the “approximation” of curvature we compute from the
mesh is a good substitute for the curvature at a scale that
we really want.

To address the problem of popping of suggestive con-
tours, we do not directly replace the old per-vertex cur-
vatures and normals in each frame with the new values
computed over the progressive mesh. Instead, we take
a weighted average of the new and old values, with
a larger weight assigned to the old value. The result is
that both the interpolated curvature and its derivative (used
in suggestive contour extraction) change gradually over
time.

Detail control in line drawings of 3d meshes 701

Note that each edge split or vertex collapse affects
curvature values at multiple vertices (specifically, in the
2-ring neighborhood of the operation). To simplify book-
keeping, we choose a strategy of interpolating curvature
values multiplicatively (instead of addivitively), as fol-
lows. Let pi denote the value already stored in the mesh
at frame k, and let g denote the newly computed value.
For purposes of analysis, assume that g is fixed (e.g.,
the camera and progressive mesh have recently stopped
changing). If w is the weight assigned to ¢, the interpola-
tion pig+1 = (1 — w) px + wq forms a geometric series and
after n frames p,, = (1 —w)" po+ (1 — (1 —w)")q. There-
fore, if we want to reach a given fraction o of ¢ over
time interval ¢, and the frame rate is f frames per sec-
ond, then n = ft,and w = 1 — (1 — «)n. For example, if
t =0.8sec, f =251fps, and o = 0.9, then we should take
w ~ 0.1087.

We apply this interpolation to surface normals (used
in extracting silhouettes) and also to radial curvature and
its derivative in the radial direction (used in extracting
suggestive contours). Since radial curvature is view depen-
dent, this means that the interpolated radial curvature in
the current frame is influenced by the viewing direction
of recent frames. This introduces a small delay in the re-
sponse of suggestive contours to the changing view vector
during camera or object rotations. This effect is not readily
apparent in most cases but can sometimes be noticed when

the camera stops abruptly—suggestive contours continue
to evolve for a brief time until they “catch up” to the cur-
rent view.

4 Results and discussion

The still images in this paper and the accompanying
video demonstrate our method for controlling detail in
line drawings of 3D meshes. We used Rusinkiewicz’s
publically available real-time suggestive contour source
code [15] for computing curvatures and rendering sug-
gestive contours. The line drawings are augmented with
a simple toon shader [10] that helps to convey shape. Note
that our technique for controlling detail in the number
and placement of strokes also controls detail in the toon
shader.

Our test machine has a 2.8 GHz Pentium 4 processor
with 1 GB main memory and a 128 MB ATI Radeon 9800
Pro Graphics Card. Our system achieves interactive rates
(5 to 30 fps) for models up to around 100,000 polygons.
The video clips were captured in real time.

The Buddha model on the left in Fig. 1 contains over
1 million polygons. The definition of suggestive contours,
based on curvature, does not consider the scale at which
the model is viewed, and so in this full-detail rendering
many small (subpixel) “features” appear as specks in the

Fig. 1. Left: Full-detail Buddha model (~1 million polygons). Silhouettes and suggestive contours at fine scales appear as many small
specks. Middle: Controlled detail (~70,000 polygons). Right: More detail is generated when the camera zooms in

702 K. Jeong et al.

image. The image in the middle was generated with a con-
trolled level of detail. The approximation contains roughly
70,000 triangles, which is sufficient to convey its import-
ant features. On the right the camera has zoomed in. In
response, the system has increased the level of detail ac-
cordingly.

The skull in Fig. 2 shows another example of a high-
detail mesh that leads to many suggestive contours corres-
ponding to small undulations in the surface. With a con-
trolled level of detail these small features are eliminated
while larger ones are retained.

Figure 3 shows how our method varies the amount
of detail in the rendered image with distance. The full-

resolution elephant model contains wrinkles along the
length of the trunk. The tip of the trunk in the left image
is far enough away that lines there have been eliminated.
The middle and right images, rendered from further away,
show even less detail. Figure 4 shows additional examples
of detail varying inversely with distance from the camera.

The landscape in Fig. 5 is rendered with high detail
on the left and reduced detail on the right. For this image
we did not use a constant 2D target size for triangles. In-
stead, target sizes grow with distance from the camera.
The effect is that detail is reduced disproportionately for
distant parts of the model compared to those in the fore-
ground.

Fig. 2. In the full-detail model on the left, suggestive contours convey many small undulations in the surface. The reduced-detail version
on the right elminates these small-scale shape features but preserves larger ones

Fig. 3. Detail of this elephant model is reduced with increasing distance from the camera

Detail control in line drawings of 3d meshes 703

Fig.5. A terrain model rendered with full detail (leff) and reduced detail (right). On the right, the image space target size was made to
increase with distance from the camera. Detail thus drops off disproportionately for distant regions compared to the foreground

Fig. 6. The armadillo model rendered with different levels of detail. Small features in the arms and legs disappear first as the camera zooms
out

704 K. Jeong et al.

Fig. 7. The feline model rendered with different levels of detail. The fine details in the wings fade out according to the distance from the

viewer

Figures 6 and 7 show additional results. Small bumps
on the arms and legs of the armadillo model in Fig. 6 are
eliminated first, followed by larger shape features as the
camera zooms out. In Fig. 7, fine details in the wings of
the feline model fade out as distance to the viewer in-
creases.

The accompanying video demonstrates additional re-
sults, as well as the temporal behavior of silhouettes and
suggestive contours in our system. Although strokes are
not entirely stable, it is clear that the combination of ge-
omorphs and smoothing of normals and curvatures over
time does produce more temporally coherent line draw-
ings.

In comparison, the temporal behavior of our other
method [12] (based on aprecomputed sequence of
smoothed meshes) is significantly more stable.> Main-
taining a stable distribution of radial curvature values
in the presence of edge collapses and vertex splits is
challenging, and our approach is not completely suc-
cessful. On the other hand, the high memory overhead
of the other method means that it does not scale well
for large models or models requiring many levels of de-
tail.

An additional limitation of the progressive-mesh-
based method is that it cannot be applied effectively to
models with complex structure (e.g., the Eiffel Tower),
since progressive meshes do not work well with such
models.

2 The bibliography reference provides a URL from which the paper and
accompanying video can be downloaded.

4.1 Future work

We envision several avenues for future work. We think the
idea of rendering shape features at a desired scale deserves
more attention than it has received so far in the computer
graphics literature. More often, the focus of level-of-detail
algorithms has been to increase efficiency without reduc-
ing the quality of the image. Instead, we are concerned
with manipulating detail in the image.

While the algorithm we presented is reasonably effect-
ive at controlling detail in the rendered image and pro-
viding control over the scale of shape features that are
depicted, it does have some limitations. In particular, using
triangle size to control detail is only suitable for some size
ranges. When triangles grow too large, visual quality is
reduced. A better approach would be to use a multiresolu-
tion shape representation that could eliminate detail below
a desired scale while producing consistent (small) triangle
sizes in image space. Where detail is eliminated the sur-
face should be smooth. Such a representation could also
solve the excess memory problem of our other method. We
are thus interested in pursuing an alternative representa-
tion that has these qualities.

While the algorithm we described can be combined
with a detail map that varies over the image or in 3D, we
have so far not explored this possibility very far. Ideas
for doing so include increasing detail in the center of the
image, in a range of depths determined by a model of the
depth of field of the camera, or for slowly moving objects
compared to fast-moving ones. We expect that addressing
the topic of detail in the rendered image more generally,

Detail control in line drawings of 3d meshes 705

for styles beyond line drawings, will remain an active
area of research, especially in nonphotorealistic computer
graphics.

Acknowledgement We thank Szymon Rusinkiewicz for making
the real-time suggestive contours source code available on the
Web and Junho Kim for the implementation of selective refine-
ment of progressive meshes. The bunny, armadillo, and “Happy

Buddha” models are courtesy of the Stanford Computer Graphics
Laboratory. The Venus, feline, and elephant models are courtesy
of Cyberware, the Caltech Multiresolution Modeling Group, and
Espona, respectively. The terrain model is courtesy of the United
States Geological Survey and the University of Washington. This
work was supported in part by the Korean Ministry of Education
through the BK21 program, the Korean Ministry of Information
and Communication through the ITRC support program, and the
NSF (CCF 0447883).

References

1. DeCarlo, D., Finkelstein, A., Rusinkiewicz, 8. Kirsanov, D., Sander, P.V., Gortler, S.J.: 13. Praun, E., Hoppe, H., Webb, M.,
S.: Interactive rendering of suggestive Simple silhouettes for complex surfaces. In: Finkelstein, A.: Real-time hatching. In:
contours with temporal coherence. In: SGP ’03: Proceedings of the 2003 Proceedings of ACM SIGGRAPH 2001,
NPAR 2004: 3rd International Symposium Eurographics/ACM SIGGRAPH Computer Graphics, pp. 579-584 (2001)
on Non Photorealistic Rendering, pp. 15-24 Symposium on Geometry Processing, 14. Rusinkiewicz, S.: Estimating curvatures and
(2004) pp. 102-106. Eurographics Association, their derivatives on triangle meshes. In:

2. DeCarlo, D., Finkelstein, A., Rusinkiewicz, Aire-la-Ville, Switzerland (2003) Symposium on 3D Data Processing,
S., Santella, A.: Suggestive contours for 9. Kowalski, M.A., Markosian, L., Northrup, Visualization, and Transmission (2004)
conveying shape. ACM Trans. Graph. J.D., Bourdev, L., Barzel, R., Holden, L.S., 15. Rusinkiewicz, S.: Real-time suggestive
22(3), 848-855 (2003) Hughes, J.F.: Art-based rendering of fur, contours, v. 1.2.

3. Deussen, O., Strothotte, T.: grass, and trees. In: Proceedings of http://www.cs.princeton.edu/
Computer-generated pen-and-ink SIGGRAPH 99, Computer Graphics, gfx/proj/sugcon/ (2004)
illustration of trees. In: Proceedings of pp. 433438 (1999) 16. Webb, M., Praun, E., Finkelstein, A.,
ACM SIGGRAPH 2000, Computer 10. Lake, A., Marshall, C., Harris, M., Hoppe, H.: Fine tone control in hardware
Graphics, pp. 13—18 (2000) Blackstein, M.: Stylized rendering hatching. In: NPAR 2002: 2nd International

4. Grabli, S., Durand, F,, Sillion, F.: Density techniques for scalable real-time 3d Symposium on Non Photorealistic
measure for line-drawing simplification. In: animation. In: NPAR 2000: 1st Rendering, pp. 53-58 (2002)
Proceedings of Pacific Graphics (2004) International Symposium on Non 17. Wilson, B., Ma., K.L.: Representing

5. Hoppe, H.: Progressive meshes. In: Photorealistic Animation and Rendering, complexity in computer-generated
Proceedings of SIGGRAPH 96, Computer pp. 13-20 (2000) pen-and-ink illustrations. In: NPAR 2004:
Graphics, pp. 99-108 (1996) 11. Markosian, L., Meier, B.J., Kowalski, 3rd International Symposium on Non

6. Hoppe, H.: View-dependent refinement of M.A., Holden, L.S., Northrup, J.D., Photorealistic Rendering (2004)
progressive meshes. In: Proceedings of Hughes, J.F.: Art-based rendering with 18. Winkenbach, G., Salesin, D.H.:
SIGGRAPH 97, Computer Graphics, continuous levels of detail. In: NPAR 2000: Computer-generated pen-and-ink
pp. 189-198 (1997) Ist International Symposium on Non illustration. In: Proceedings of SIGGRAPH,

7. Isenberg, T., Freudenberg, B., Halper, N., Photorealistic Animation and Rendering, Computer Graphics, pp. 91-100 (1994)
Schlechtweg, S., Strothotte, T.: pp. 59-66 (2000) 19. Winkenbach, G., Salesin, D.H.: Rendering
A developer’s guide to silhouette 12. Ni, A., Jeong, K., Lee, S., Markosian, L.: parametric surfaces in pen and ink. In:

algorithms for polygonal models. IEEE
Comput. Graph. Appl. 23(4), 28-37 (2003).
http://dx.doi.org/10.1109/
MCG.2003.1210862

Multi-scale line drawings from 3D meshes.
http://graphics.eecs.umich
.edu/npr/msld/ (2005)

Proceedings of SIGGRAPH, Computer
Graphics, pp. 469-476 (1996)

706 K. Jeong et al.

KYUMAN JEONG is a Ph.D. student in the Com-
puter Graphics Laboratory at POSTECH, Korea.
He received his B.S. in computer science from
the Korea Institute of Science and Technology in
1998 and his M.S. in computer science and en-
gineering from POSTECH in 2000. His research
is in controlling detail in NPR and developing an
oriental black-ink rendering system.

ALEX NI received his B.S.E. degree in com-
puter science and electrical engineering from the
University of California, Berkeley, in 2003. He
went on to earn a master’s degree in computer
science at the University of Michigan in 2005.
He currently works as a developer at Visual Con-
cepts in San Rafael, CA. His research interests
include nonphotorealistic rendering, level of de-

tail methods, and hardware-accelerated rendering
techniques.

SEUNGYONG LEE is an associate professor
of computer science and engineering at Po-
hang University of Science and Technology
(POSTECH), Korea. He received his B.S. de-
gree in computer science and statistics from the
Seoul National University in 1988 and his M.S.
and Ph.D. in computer science from the Korea
Advanced Institute of Science and Technology
(KAIST) in 1990 and 1995, respectively. From
1995 to 1996 he worked at the City College
of New York as aresearch associate, where he
further extended his Ph.D. work on image mor-
phing. Since 1996 he has been a faculty member
and leading the Computer Graphics Group at

POSTECH. From 2003 to 2004 he spent a sab-
batical year at MPI Informatik in Germany as
a visiting senior researcher. His current research
interests include geometry and mesh processing,
nonphotorealistic rendering, and mobile graphics
systems. He is a member of ACM and the IEEE
Computer Society.

LEE MARKOSIAN is an assistant professor of
computer science at the University of Michigan.
He received his Ph.D. in computer science from
Brown University in 2000, spent the next 3 years
as a postdoctoral research associate at Princeton
University, and joined the faculty of the Univer-
sity of Michigan in 2003. His research interests
include nonphotorealistic rendering and sketch-
based modeling of 3D shapes.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

