Skip to main content
Log in

Intersection fields for interactive global illumination

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a novel visibility representation, Intersection Field (i-Field), to compute global illumination in interactive rates. The i-Field provides fast visibility and line-scene intersection queries. We factorize the direct illumination into local irradiance and visibility ratio. The latter is efficiently evaluated by querying the i-Field. The indirect illumination is simulated by photon tracing, which is also accelerated by the i-Field. By quickly detecting invalid portions, our approach can handle highly dynamic scenes, allowing light sources and scene geometries to be manipulated at interactive rates through rigid transformations and free deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexander K (1996) Quasi-Monte Carlo radiosity. EGWR: 101–100

  2. Alexander K (1997) Instant radiosity. GRAPHITE: 49–56

  3. Bent L, Niels J (2004) Simulating photon mapping for real-time applications. EGWR: 123–131

  4. Brian E, James R (1992) David H: An importance-driven radiosity algorithm. ACM SIGGRAPH: 273–282

    Google Scholar 

  5. Bruce W, Gun A, et al. (1997) Fitting virtual lights for non-diffuse walkthroughs. ACM SIGGRAPH: 45–48

    Google Scholar 

  6. Bruce W, George D, Steven P (1999) Interactive rendering using the render cache. EGWR 10:235–246

    Google Scholar 

  7. Bruce W, George D, Donald G (2002) Enhancing and optimizing the render cache. EGWR: 37–42

  8. Carsten B, Ingo W, Philipp S (2003) A scalable approach to interactive global illumination. Computer Graphics Forum 22(3):621–630

    Article  Google Scholar 

  9. Chris, B, Donald, F (1989) Illumination networks: fast realistic rendering with general reflectance functions. ACM SIGGRAPH: 23(3):89–98

    Google Scholar 

  10. Cyrille D, Francois S (1999) Space-time hierarchical radiosity for high-quality animations. EGWR: 235–246

  11. Cyrille D, Kirill D, Karol M (2003) State of the art in global illumination for interactive applications and high-quality animations. Computer Graphics Forum 22(1):55–77

    Article  Google Scholar 

  12. David G, Francois S, Donald G (1990) Radiosity redistribution for dynamic environments. IEEE CG&A 10(4):26–34

    Google Scholar 

  13. Francesc C, Matue S, László N (2004) Fast multipath radiosity using hierarchical subscenes. Computer Graphics Forum 23(1):43–54

    Article  Google Scholar 

  14. Frank S, Andreas P (1999) Reducing memory requirements for interactive radiosity using movement prediction. EGWR: 225–234

  15. Frédo D (1999) 3D visibility analytical study and applications. PhD Thesis, Université Joseph Fourier, Grenoble, France.

  16. Gene G, Peter S, et al.(1998) The Irradiance Volume. IEEE CG&A 18(2):32–43

  17. George D, Francois S (1997) Interactive update of global illumination using a line-space hierarchy. ACM SIGGRAPH: 57–64

    Google Scholar 

  18. Gonzalo B, Mateu S (1996) The multi-frame lighting method: a Monte Carlo based solution for radiosity in dynamic environments. EGWR: 185–194

  19. Gonzalo B, Pueyo X (2001) Animating radiosity environments through the multi-frame lighting method. J. Visual. Comp. Animat. 12(2):93–106

    Google Scholar 

  20. Gregory W, Maryann S (1999) The holodeck ray cache: an interactive rendering system for global illumination in nondiffuse environments. ACM TOG 18(4):361–368

    Google Scholar 

  21. Hector Y, Sumanita P, Donald PG (2001) Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM TOG 20(1):39–65

    Google Scholar 

  22. Ingo W, Philipp S, et al. (2001) Interactive rendering with coherent ray tracing, Computer Graphics Forum 20(3):153–164

    Google Scholar 

  23. Jeffry N, Julie D, Holly R (1996) Implementation and analysis of an image-based global illumination framework for animated environments. IEEE Trans. on Visualization and Computer Graphics 2(4):283–298

    Article  Google Scholar 

  24. Jensen H (1996) Global illumination using photon maps. EGWR: 21–30

  25. Johannes G, Ingo W, Philipp S (2004) Realtime caustics using distributed photon mapping. EGWR: 109–121

  26. Karol M, Takehiro T, et al. (2001) Perception-guided global illumination solution for animation rendering. ACM SIGGRAPH: 221–230

    Google Scholar 

  27. Kavita B, Julie D, Seth T (1999) Radiance interpolants for accelerated bounded-error ray tracing. ACM TOG 18(3):213–256

    Google Scholar 

  28. Kirill D, Stefan B, et al. (2002) Interactive global illumination using selective photon tracing. EGWR: 25–36

  29. Larry A, Pat H (1993) A hierarchical illumination algorithm for surfaces with glossy reflection. GRAPHITE: 155–162

  30. Laszlo K, Werner P(1998) Global ray-bundle tracing with hardware acceleration. EGWR: 247–258

  31. Laszlo K (1999) Stochastic iteration for non-diffuse global illumination. Computer Graphics Forum 18(3):233–244

    Article  Google Scholar 

  32. Laszlo K, György A, Balazs B (2003) Global illumination animation with random radiance representation. EGWR: 64–73

  33. Marc S, Annete S, et al. (2000) Efficient glossy global illumination with interactive viewing. Computer Graphics Forum 19(1):13–25

    Article  Google Scholar 

  34. Mark S, Jörg H, et al. (2000) Walkthroughs with corrective texturing. EGWR: 377–390

  35. Martin I, Pueyo X, Tost D (2003) Frame-to-Frame coherent animation with two-Pass radiosity. IEEE Trans. on Visualization and Computer Graphics Jan.: 70–84

  36. Maryann S, Carlo S (2000) Tapestry: a dynamic mesh-based display representation for interactive rendering. EGWR: 329–340

  37. Parag T, Fabio P, et al. (2002) Interactive global illumination in dynamic scenes. GRAPHITE: 537–546

  38. Per C, Dana B (2004) An irradiance atlas for global illumination in complex production scenes. EGWR: 132–141

  39. Pfister H, Zwicker M, et al.(2000) Surfels: surface elements as rendering primitives. ACM SIGGRAPH: 335–342

    Google Scholar 

  40. Pueyo X, Tost D, et al. (1997) Radiosity for dynamic environments. The Journal of Visualization and Computer Animation 8(4):221–231

    Article  Google Scholar 

  41. Rafal M, Sumanta P, Karol M (2002) Cube-map data structure for interactive global illumination computation in dynamic diffuse environments. ICCVG: 25–29

  42. Rui B, Kenneth H, et al. (1999) Increased photorealism for interactive architectural walkthroughs. ACM Symposium on Interactive 3D Graphics: 183–190

    Google Scholar 

  43. Sbert M, Pueyo X (1996) Global multipath Monte Carlo algorithms for radiosity. The Visual Computer 12(2):47–57

    Google Scholar 

  44. Sbert M, Szécsi L, Laszlo S (2004) Real-time light animation. Computer Graphic Forum 23(3):291–299

    Article  Google Scholar 

  45. Seth T, Kavita B, Julie D (1996) Conservative radiance interpolants for ray tracing. EGWR: 257–268

  46. Shenchang C (1990) Incremental radiosity: an extension of progressive radiosity to an interactive image synthesis system. GRAPHITE: 135–144

  47. Shenchang C, Holly R, et al. (1991) A progressive multi-pass method for global illumination. GRAPHITE: 165–174

  48. Steve P, William M, Perter-Pike S (1999) Interactive ray tracing. ACM Symposium on Interactive 3D Graphics: 119–126

    Google Scholar 

  49. Timothy P, Craig D, et al. (2003) Photon mapping on programmable graphics hardware. SIGGRAPH/EUROGRAPHICS Workshop On Graphics Hardware: 41–50

  50. Tommer, L, Olga, S, Daniel, C (2003) Ray space factorization for from-region visibility. ACM SIGGRAPH 22(3):595–604

    Google Scholar 

  51. Valdimir V, Karol M, et al. (2000) Using the visual differences predictor to improve performance of progressive global illumination computation. ACM TOG 19(2):122–161

    Google Scholar 

  52. William S, James F, et al. (2004) Perceptual illumination components: a new approach to efficient, high quality global illumination rendering. ACM TOG 23(3):742–749

    Google Scholar 

  53. William M, Leonard M, Gary B (1997) Post-rendering 3D warping. Symposium on Interactive 3D Graphics: 7–16

    Google Scholar 

  54. Wolfgang S, Rui B (1997) Interactive rendering of globally illuminated glossy scenes. EGWR: 93–102

  55. Xavier G, George D (2001) Incremental Updates for Rapid Glossy Global Illumination. Computer Graphics Forum 20(3):268–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Z., Hua, W., Chen, L. et al. Intersection fields for interactive global illumination. Visual Comput 21, 569–578 (2005). https://doi.org/10.1007/s00371-005-0329-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-005-0329-8

Keywords

Navigation