Skip to main content
Log in

GPU-based 3D wavelet reconstruction with tileboarding

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present a GPU-based algorithm for reconstructing 3D wavelets using fragment programs. To minimize the data transfer and fragment processing overhead, we propose a novel scheme that uses tileboards as a primary layout to organize 3D wavelet coefficients. By accessing the tileboards with correct texture coordinates, Haar and Daubechies wavelets can be evaluated by the GPU in real time. The tileboard also serves as input to the rendering programs. We demonstrate how the tileboards allow us to efficiently cull unnecessary data, and we extend our work to render large volumes with multiple resolution levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chui, C.K.: An Introduction to Wavelets. Academic Press, Inc., San Diego, CA (1992)

  2. Daubechies, I.: Ten lectures on wavelets. In: SIAM. Philadelphia, PA (1992)

  3. Fernando, R., Harris, M., Wloka, M., Zeller, C.: Programming graphics hardware. In: Tutorial of EUROGRAPHICS ’04 (2004)

  4. Foran, J., Cabral, B., Cam, N.: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In: Workshop on Volume Visualization (1994)

  5. Guthe, S., Wand, M., Gonser, J., Strasser, W.: Interactive rendering of large volume data sets. In: IEEE Visualization 2002, pp. 53–60 (2002)

  6. Hopf, M., Ertl, T.: Accelerating 3d convolution using graphics hardware. In: IEEE Visualization ’99, pp. 471–474 (1999)

  7. Hopf, M., Ertl, T.: Hardware based wavelet transformations. In: Workshop on Vision, Modeling, and Visualization ’99, pp. 317–328 (1999)

  8. Hopf, M., Ertl, T.: Hardware accelerated wavelet transformations. In: Proc. EG/IEEE TCVG Symposium on Visualization VisSym 2000, pp. 93–103 (2000)

  9. Ihm, I., Park, S.: Wavelet-based 3D compression scheme for interactive visualization of very large volume data. Computer Graphics Forum 18(1), 249–265 (1999)

  10. Kraus, M., Ertl, T.: Adaptive texture maps. In: HWWS ’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 7–15. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2002)

  11. Lamar, E., Hamann, B., Joy, K.: Multiresolution techniques for interactive texture-based volume visualization. In: Proceedings of Visualization ’99, pp. 355–361. IEEE Computer Society Press, Los Alamitos, CA (1999)

  12. Lefohn, A., Kniss, J., Hansen, C., Whitaker, R.: Interactive deformation and visualization of level set surfaces using graphics hardware. In: IEEE Visualization 2003

  13. Mark, W.R., Glanville, R.S., Akeley, K., Kilgard., M.J.: Cg: A system for programming graphics hardware in a c-like language. ACM Transactions on Graphics 22, 896–907 (2003)

    Google Scholar 

  14. Muraki, S.: Approximation and rendering of volume data using wavelet transforms. In: VIS ’92: Proceedings of the 3rd Conference on Visualization ’92, pp. 21–28. IEEE Computer Society Press (1992)

  15. Ning, P., Hesselink, L.: Fast volume rendering of compressed data. In: Proceedings of the 4th Conference on Visualization ’93, pp. 11–18 (1993)

  16. Rodler, F.F.: Wavelet based 3d compression with fast random access for very large volume data. In: Proceedings of the 7th Pacific Conference on Computer Graphics and Applications, p. 108 (1999)

  17. Rost, R.J.: OpenGL Shading Language. Addison-Wesley (2004)

  18. Schneider, J., Westermann, R.: Compression domain volume rendering. In: Proceedings IEEE Visualization 2003 (2003)

  19. Stollnitz, E.J., Derose, T.D., Salesin, D.H.: Wavelets For Computer Graphics: Theory and Applications. Morgan Kaufmann Publishers, Inc. (1996)

  20. Strang, G., Nguyen, T.: Wavelets and Filter Banks, 1st edn. Wellesley-Cambridge Press (1996)

  21. Wang, J., Wong, T.T., Heng, P.A., Leung, C.S.: Discrete wavelet transform on GPU. In: ACM Workshop on General Purpose Computing on Graphics Processors (2002)

  22. Westermann, R.: A multiresolution framework for volume rendering. In: Proceedings of the 1994 Symposium on Volume Visualization, pp. 51–58. ACM Press (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, A., Shen, HW. GPU-based 3D wavelet reconstruction with tileboarding. Visual Comput 21, 755–763 (2005). https://doi.org/10.1007/s00371-005-0332-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-005-0332-0

Keywords

Navigation