
Punctuated Simplification of Man-Made Objects

Justin Jang, Peter Wonka, William Ribarsky, and Christopher D. Shaw

GVU Center, Georgia Institute of Technology

Abstract
We present a simplification algorithm for manifold polygonal meshes of plane-dominant models. Models of this type are likely
to appear in man-made environments. While traditional simplification algorithms focus on generality and smooth meshes, the
approach presented here considers a specific class of man-made models. By detecting and classifying edge loops on the mesh
and providing a guided series of binary mesh partitions, our approach generates a series of simplified models, each of which
better respects the semantics of these kinds of models than conventional approaches do. A guiding principle is to eliminate
simplifications that do not make sense in constructed environments. This, coupled with the concept of “ punctuated simplifica-
tion” , leads to an approach that is both efficient and delivers high visual quality. Comparative results are given.

Categories: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling – Surface and object representations.

1. Introduction

A great deal of current modeling and visualization effort is
directed towards triangle meshes with high geometric de-
tail. To maintain high frame rates during interactive visu-
alization, a common strategy is to create different levels of
simplification for one object and switch between these
representations during runtime. The levels of simplifica-
tions are also called levels of detail (or LODs) of the
model.

Simplification algorithms are often demonstrated on
models from the Stanford scanning repository [Sta04],
which includes the well-known models of a bunny, a Bud-
dha statue and Michelangelo’s David. These models can be
iteratively simplified where each new level of simplifica-
tion has one vertex less than the previous one [Gar97]
[Hop96].

Although impressive results can be achieved for these
models, there is still the lingering problem that current
automatic simplification algorithms perform poorly on a
large class of man-made objects. Often designers must
create simplified versions along with the original versions
for these models.

In contrast to the previously mentioned models, which
are dominated by smooth differential surfaces, man-made
objects are usually dominated by features. These models
contain many sharp edges and for large parts of the model
the triangular mesh is not an approximation of a smooth
differential surface. Instead, the mesh represents the actual
piece-wise linear surface. Examples include furniture, ma-
chine parts, electronic devices and buildings (See Figure 1).

If we apply current smooth simplification methods to
man-made models, resulting simplifications may deviate
from the ideal. The following are weaknesses of per-vertex
simplification schemes:
- Small features are merged into new larger ones. This is
illustrated in Figure 2a. Here, the larger features have char-

acteristics not present in the smaller features. In this case,
new face orientations are introduced.
- Many intermediate steps of the calculated simplifications
are not correct (see Figure 2b). The simplification of a
wheel in Figure 3 illustrates this problem. The simplifica-
tion shown on the right has a low visual quality (in this case
due to violation of symmetry (also see Figure 2c)) and is not
very useful for most applications.
- It is not clear which intermediate simplification steps are
meaningful.

Figure 1: Models with differential (left) and non-
differential (right) surfaces.

In this paper we take a different approach to the simplifi-
cation of man-made objects. Our approach seeks to identify
features in a model and removes them in a consistent man-
ner. Note that our approach to handle features is different
than previous approaches [Kho03, Poj03]. In previous work
the main goal was to mark certain important parts of the
model (features) and try to retain them as long as possible
during simplification. However, the actual simplification of
these features is again a triangle-by-triangle simplification.
In contrast, our approach tries to identify features as clusters
of triangles and removes a whole cluster at once in a consis-
tent manner.

Figure 2: Problems with successive vertex merging. Small
features merge into larger ones (a). In the window with
frame (b) and the circle (c), some intermediate steps are
intuitively not correct.

Figure 3: A model of a wheel (left). The simplification on
the right has low visual quality.

Our algorithm draws from ideas of the computer-aided
manufacturing community, where designs have to be de-
composed into meaningful semantic parts before they can
be manufactured. We employ a loop-based feature detec-
tion algorithm to create a hierarchical tree that structures
the model. To obtain different levels of detail, we remove
several features of similar or correlated geometric impor-
tance together, rather than in a more continuous LOD fash-
ion. We call this approach punctuated simplification. In this
paper we show that punctuated simplification typically
leads to relatively few steps between the full and the sim-
plest model. Further, the intermediate models have better
visual quality than per-vertex intermediate models of simi-
lar complexity. The simplification tree can be used to ex-
tract a large number of possibly view-depended levels of
detail. These LODs can be precalculated or generated dur-
ing runtime.

We believe that the idea of punctuated simplification is a
new contribution to the world of simplification and will
help to extend the applicability of automatic simplification
algorithms to applications like CAD, computer games,
urban and architectural simulation.

2. Related Work

Simplification: There is an extensive literature on the sim-
plification of polygonal models. We will not try to cover
this broad literature but will rather focus on representative
work most relevant to our approach. We refer the reader to

recent surveys for a comprehensive discussion of simplifi-
cation methods [Lue01].

A variety of per-vertex algorithms have been developed
for mesh simplification. These include algorithms that per-
form vertex merges [Gar97], edge collapses [Hop96], or
vertex removals [Lin96]. Some algorithms require manifold
topology [Hop96] while others are “ topologically-tolerant”
[Gar97], but all work one vertex at a time. In addition there
are per-vertex algorithms that attempt to preserve appear-
ance by considering not only errors in surface position
caused by the simplification, but also errors due to changes
in surface color and curvature [Coh98, Gar98]. Although in
principle a simplification algorithm could be constructed
that considers all these aspects of appearance, in practice
this is hard to do in an efficient and balanced way [Jan03].
In practice either geometric or color/texture aspects domi-
nate.

There are also more general vertex merge algorithms
based on various multi-vertex clustering mechanisms
[Ros93, Low97]. These are rather insensitive to topology
and in the most general case do not require mesh connec-
tivity at all. The algorithms are fast, work well on large out-
of-core meshes, and can produce drastic simplifications.
However, it is difficult to specify the output in terms of
number of polygons for the algorithm, and the results are
not usually as visually pleasing as with per-vertex algo-
rithms.

In general, the vertex merge, removal or clustering opera-
tions in all these approaches can be encoded in a tree, which
can then be traversed in any order. This gives rise to view-
dependent approaches where on-the-fly simplification oc-
curs based on the current user viewpoint [Lin96, Hop97].
Perspective and distance are taken into account so that
nearby geometry facing the viewer will have more detail
than distant or oblique geometry.

Several extensions to the quadric-error approach [Gar97,
Coo01,Poj03, Kho03] allow a user to specify important
parts of the model. In these extensions the simplification
process simultaneously considers the quadric error and the
user specified importance to select candidates for simplifi-
cation. However, these approaches do not address the prob-
lem of how to identify and consistently remove features, but
rather determine the simplification order and thereby an-
swer the question of when to remove features.

El-Sana and Varshney [Els98] present a topology-
simplifying approach based on the concept of alpha-hulls.
The approach is able to eliminate small holes and protuber-
ances which can hinder and restrict extreme simplification.
However, the approach can only deal with relatively small
holes and protuberances with small gaps and ignores the
size of the protuberances themselves.

Our approach provides a set of simplifications and an or-
der to follow through them, but it does not do this as a se-
quence of per-vertex simplifications. Alternatively, we do
not follow a clustering approach that uses some distance
criterion for determining which vertices to merge. Rather,
our punctuated simplification approach preserves planes,
edges, and orientations until they are deemed candidates for
removal, at which point they are removed all at once.

(a) (b)

(c)

Figure 4: Three cases of mesh features. a) Smooth sur-
faces: normals per vertex; the mesh is only seen as an ap-
proximation to the actual (smooth) surface; differential
geometry applies. b) smooth surfaces with features: these
are smooth surfaces that have sharp edges and corners. The
edges and corners are called features. c) plane-dominant
objects: the mesh is the actual geometry; normals are per
polygon and not per vertex. A feature is a larger connected
part of the mesh.

Feature Detection: Feature detection starts with defining
what is meant by the word “ feature” . The definition usually
depends on the context of the application and is given only
very broadly, as for example “a region of interest on the
surface of a part” [Pra85] (see Figure 4). For the actual
implementation of a feature detector, a more precise defini-
tion is necessary. A common solution is to give an enu-
merative list of features. As a consequence most feature
detectors are rule-based and each rule is able to detect a
certain type of feature. For a survey of feature detection see
[Wu96].

Feature detectors can be based on convex decomposition
[Woo82, Kim92], topology of a dual face-edge graph
[Flo89], topology of a face-edge graph in combination with
geometric tests [Gav90, Mar90, Rib01] or loop detection on
the geometry of the model [Gad99][Lu99].

Our approach is most closely related to loop-based fea-
ture detection [Lu99, Gad99]. The idea is to couple the
detection of edge loops that potentially contain a feature
together with geometric tests to verify its existence. (Note
that what we call the feature here is not the edges in the
loop but the mesh partition bounded by the loop.) We use
an adaptation of these loop-based feature detectors in our
implementation.

3. Overview

As input to our algorithm we consider triangle meshes

that represent a topological 2-manifold with boundary.
Given a model that contains non-triangular polygonal faces,
the model can be triangulated first and then processed by
our algorithm.

Our algorithm accepts models with holes and multiple
non-connected parts, but we do not alter the topology of the
model during simplification, so the simplification proce-
dure preserves holes and keeps unconnected parts separate.
Our algorithm accepts models with self-intersections, but
our goal is not to repair erroneous input models. Self-
intersections and other errors in the input model can result
in unwanted results during simplification.

We do not attempt here to deal with large models. While
a lot of simplification research has been devoted to hand-
ling large meshes, applications such as games and urban
visualization often call for a large number of simple meshes
as opposed to a few complex ones. In certain situations, it
may be necessary to display drastically simplified meshes
with visible approximation error. Thus, it is important to
ensure the quality of the coarser approximations. Further-

more, man-made objects, especially constructed objects like
buildings and furniture, generally contain more planar or
near planar surfaces than organic forms. In approximating a
shape, flat regions require much fewer linear facets than
curved regions. Therefore, plane-dominant models normally
contain fewer polygons than those with an abundance of
smooth or curvy regions.

Algorithm Overview: The algorithm has three major parts.
We will briefly describe these parts and then give more
details about these parts in the next section.
1. Feature extraction – we employ a rule-based loop-finding
method to detect the boundaries of a feature on the surface
of the model. This feature induces a partition of the mesh in
two parts.
2. Hierarchical partitioning – Using the feature extraction
method we organize the features (mesh partitions) hierar-
chically.
3. Simplification – we use the hierarchy to simplify the
model.

These three steps are demonstrated on a simple example
in Figure 5, Figure 6, and Figure 7.

Figure 5: This figure shows a simple model (left) and two
detected loops on the surface of the model shown in yellow
(right). Not all possible loops are shown.

Figure 6: This figure illustrates the partitioning of the
model from the previous figure in a hierarchical tree.

Figure 7: Two possible simplifications extracted from the
tree.

4. Feature Extraction

Our approach can be considered a general framework for
simplification. This framework incorporates explicit feature
identification and treatment into a system for generating
simplified meshes. A feature is any subset of the mesh that
can be detected by a set of rules or procedures. (The loop-
finding method described here is just one procedure that
could be used.) Thus, a feature can be arbitrarily complex.
For each feature, there is a corresponding simplification
operation. This operation can be fairly general in behavior,
so we prefer to call it a simplification treatment. Thus, both
the identification and treatment of features are defined pro-
cedurally in the framework. The framework is flexible
since it can fall back on a traditional simplification algo-
rithm where features are not present.

Loop-based feature detection is based on finding closed
poly-lines on the surface of a model (a loop). The segments
of the polyline are typically edges of the triangulation. In
this section we propose a taxonomy for loop detectors. We
classify detectors according to a) the type of edges they
detect, b) how many planes are involved in defining the
feature, c) the tolerance to noise, and d) the number of
loops specifying a feature (ability to detect topological
features).
Edge type: Edges can be concave, convex, planar, or vir-
tual. A concave edge is an edge of the triangulation where
the adjacent faces form an angle of less than 180 degrees. A
convex edge is an edge of the triangulation where the adja-
cent faces form an angle of more than 180 degrees. A pla-
nar edge is an edge of the triangulation where the two adja-
cent faces are coplanar. A virtual edge is a line segment
that crosses a face of the triangulation. Virtual edges are
helpful to make the loop finder more independent of the
actual triangulation. Figure 8 illustrates the first three cases.

Figure 8: This figure shows three edge types highlighted in
yellow. Left – concave. Middle – convex. Right – planar.

Number of Planes: The number of planes involved in
defining a feature greatly contributes to the complexity of
the detector. Typically one plane means that the feature is
contained in a plane of the model. For two planes the fea-
ture is located at an edge. For three planes the feature is
typically located at a corner. However,other configurations
are possible for features of three or more planes. Figure 9
illustrates two of these possibilities.
Noise tolerance: The tolerance to noise defines the robust-
ness of the detector. Typically some tolerance is required
for all detectors to compensate for numerical imprecision,
but scanned data often has a significant level of noise that
requires different approaches.
Number of loops: Some feature detection algorithms are
also able to detect topological features, such as holes in the
model. To be able to detect these features, a single loop is
no longer sufficient. To classify these features we can use

the number of loops that are necessary to specify the fea-
ture.

Figure 9: This figure shows a feature on a plane (left) and a
feature on an edge (right).

5. Algorithm Details

5.1. Loop Finding

We have implemented a greedy, recursive loop finder

that is able to detect planar loops. Although faster or more
robust algorithms might be found, the focus of the current
work was not to improve existing feature detectors.

The loop finder recursively traverses halfedges until a
loop is found. A halfedge is a directional edge with a head
and a tail vertex. (For details about the halfedge data struc-
ture, see [Bot02].) We start by selecting a seed halfedge. To
add a halfedge to the loop the next halfedge emanates from
the tail of the last halfedge. We use the following restric-
tions:
1. The first halfedge h1, cannot be a planar edge or al-

ready belong to a loop.
2. The second halfedge h2 cannot be collinear with the

first halfedge.
3. A halfedge hi (i > 2) has to lie in the plane formed by

h1 and h2. This plane is called the loop plane.
4. A halfedge hi (i > 2) cannot have two adjacent faces

that are both coplanar with the loop plane.
5. A halfedge hi (i > 2) can only extend or close the loop.

It is not allowed to touch or cross the loop.
We still need some geometric tests to verify the loop. For

example, we discard loops that bound a flat polygon. In the
end, it turns out that the branching factor for this con-
strained search is pretty small and the loop detection only
takes a few seconds for the models we used for our tests.

5.2. Hierarchical Partitioning

In support of the subsequent simplification phase, our algo-
rithm generates a hierarchy of feature partitions. Given a
triangular mesh M as a set of triangles, any given loop L
induces a partitioning of M into two subsets, M1 and M2.
This binary partition forms the basis of the hierarchy, which
emerges as a binary tree of mesh partitions.

We need to answer the following questions to build the
tree:

1) Given two mesh partitions M1 and M2 we must decide
which mesh is considered to be the feature. This is impor-
tant, because the feature and the rest of the mesh are treated
differently during the simplification phase. We employ a
simple heuristic H for the decision. We compute the extent,
H(M) = max(d(p1, p2)), where d is the Euclidian distance
metric and p1, p2 are vertices of the mesh. The mesh parti-

tion with the smallest non-zero extent is considered the
feature. We call this the interior partition. Note that the
other partition, called the exterior partition, might be an
empty mesh.

2) To build the tree we always select the partitioning
with the largest interior partition where the exterior parti-
tion is not empty. We choose to use the extent of the mesh
as a heuristic. This heuristic ensures that the features are
properly nested.

We then construct the tree with a recursive procedure
(see Figure 10.) For the sake of discussion, we choose to
position the interior partition as the left child and the exte-
rior partition as the right child. An example tree is given in
Figure 6. For models with many nested features, the tree
may contain long runs of branching from the left child node
(the internal partition node). For models with many identi-
cal features, the tree may contain long runs of branching
from the right child node (the external partition node).

buildtree(M)
 L = findloops(M)
 For p in L
 [M1, M2] = partition(M, p)
 I = minextent(M1, M2)
 E = maxextent(M1, M2)
 If extent(I) > extent(bestI) then
 bestI = I
 bestE = E
 Endif
 Endfor
 M.left = buildtree(bestI)
 M.right = buildtree(bestE)

Figure 10: Simplified pseudocode of the recursive proce-
dure for constructing the hierarchy.

5.3. Simplification

The submesh tree can be used in more than one way to
guide simplification. For example, the tree can guide the
construction of a sequence of static level-of-detail (LOD)
representations.

We need the following three procedures to implement
the simplification:

1) Simplify(M, L): For a feature mesh M that is bound
by a loop L, we need a simplification treatment that gener-
ates a simplified version of the mesh M. We call this Sim-
plify(M, L). The simplification treatment for a planar fea-
ture is typically hole-filling [Kre00] (that is triangulation of
an arbitrary polygon), but more complex operations are
possible [Rib01].

2) Coalesce(M): We need a procedure to reduce the
number of coplanar triangles in a mesh. We call this Coa-
lesce(M). We choose to use the framework of Garland and
Heckbert [Gar97] for this task. By selecting an error thresh-
old close to zero and specifying relevant loops as con-
straints, we can achieve the desired effect.

3) ST(M, L): We need a cost function to determine how
much error the simplification of a feature introduces. We
choose to use a simple metric calculating the surface area
of the mesh M minus the surface area of the simplified
version of M, that is ST(M, L). Depending on the amount

of semantic information available for the model, the cost
function can be made more interesting. Along with geomet-
ric characteristics, factors such as importance, semantic
sensibility, and physical plausibility can be incorporated
into such a metric.

The process for generating static LODs is as follows.
1. Pick lowest cost feature (interior partition) node with

mesh M and loop L.
2. Calculate Simplify(M, L) and store the simplified ver-

sion with the node.
3. Collapse nodes. A node can be collapsed if the feature

child (the interior partition node) has been simplified
and the other child (the exterior partition node) does
not have any further children. To collapse a node we:

1) combine the meshes M1 and M2 of the chil-
dren to obtain M = M1 + M2

2) call Coalesce(M) on the combined geometry
and store it with the node

4. Repeat steps 2-3.

At any time the union of all leaf nodes can be calculated to
obtain a valid level-of-detail of the model. To obtain a dis-
crete set of static LODs we propose the following methods:
(a) find the peaks in a histogram of [errors incurred, faces
simplified]; (b) find the zero crossings of derivatives of
[errors incurred, faces simplified]; (c) round to logarithmic
steps; or (d) use thresholds. For our results, we used a mov-
ing threshold. That is, when the error passes e + t, where e
is the last error incurred by the last LOD (initially zero) and
t is the threshold, we grab the current LOD and update e.
Note that in general, applying any of these methods to a
traditional simplification sequence like a quadric simplifica-
tion will not produce the same results as applying them to
the hierarchically partitioned mesh, which has eliminated
meaningless or incorrect simplification steps.

6. Results

In this section we demonstrate that the proposed method
gives good results and that the consideration of features is
in fact crucial to get meaningful simplifications for man-
made objects. We demonstrate our results by comparing our
simplifications with the algorithms proposed by Garland
and Heckbert (quadrics/qslim) [Gar97] and Lindstrom and
Turk (memoryless simplification) [Lin98]. We did not try to
optimize our implementation for speed, but the simplifica-
tion times are still reasonable. To give a rough estimate, the
simplification time is under 5 seconds for the models shown
here.

The first model is the model of the wheel shown in
Figure 3. Figure 11 shows three LODs obtained using the
three simplification approaches. See the figure caption for a
description of the results. Figure 12 shows the image differ-
ences for each of these LODs.

The second model used to illustrate our method is an ar-
moire (see Figure 13 and Figure 14). We compare again
against the original model.

Figure 15 shows a LOD sequence of a window model
produced with our method.

Figure 11: Three levels-of-detail obtained with Qslim
(left), memoryless simplification (center), and our algo-
rithm (right). The three LODs contain 558 (top row), 318
(second row), and 76 (bottom row) triangles. Our algorithm
automatically extracts these levels-of-detail. In contrast to
the other two methods, both simplifications of our method
make sense and have good visual quality. Note that the
LODs in the top row are geometrically identical to the
original (560 triangles).

Figure 12: Difference images (negative image) of the sec-
ond and third rows in Figure 11 with respect to the original
(i.e. top row).

7. Discussion

Figure 16-Figure 18 compare the max, mean, and RMS
errors of three approaches, Qslim/quadric simplification
(QS), memoryless simplification (MS), and our punctuated
simplification approach (PS). Forward errors (original-to-
simplified) and backward errors (simplified-to-original)
along with forward plus backward errors are shown. Notice
that for the models tested, the visual quality of the simplifi-
cations is not fully represented or revealed by the metrics.
The difference images seem to suggest that punctuated
simplification is better than the other approaches. However,
the max, mean, and RMS metrics give mixed results and
even results counter to what one gets from visual examina-
tion. This confirms that different metrics, such as one based
on perception [Wil03], are sometimes necessary for evalu-

ating simplification quality, especially for constructed mod-
els like these. Furthermore, even a straight-forward measure
of RMS image difference cannot account for qualitative
inaccuracies such as violation of symmetry (Figure 11) or
the creation of misrepresentative shapes (Figure 14).

Figure 13: Top left: The original armoire model with 476
polygons. Bottom left: Wireframe of original. Top row:
Selected simplifications using our algorithm (94 triangles),
Qslim (94 triangles), memoryless simplification (94 trian-
gles), and Maya (96 triangles) [May04]. Bottom row: Cor-
responding difference images (negative image) of the sim-
plifications to the original.

Figure 14: Close-up of armoire. All images correspond to
those in Figure 13. Notice that triangle-shaped artifacts
appear on the Qslim, memoryless, and Maya [May04] re-
sults. Also notice the difference in size and angle of the
bevel on the armoire doors.

Figure 15: A sequence of simplifications of a window
model is automatically extracted with our algorithm. Entire
features are removed per step, while the rest of the model is
retained.

Figure 16: Max, mean, and RMS error values for the wheel
model simplifications of 318 triangles. Forward (original-
to-simplified), backward (simplified-to-original), and for-
ward plus backward errors are shown for qslim (QS - left),
memoryless simplification (MS - middle), and our method
(PS - right).

Figure 17: Max, mean, and RMS error values for the wheel
model simplifications of 76 triangles. Forward, backward,
and forward plus backward errors are shown for qslim
(QS), memoryless simplification (MS), and our method
(PS).

Figure 18: Max, mean, and RMS error values for the ar-
moire model simplifications of 94 triangles (from lod 5 of
10). Forward, backward, and forward plus backward errors
are shown for qslim (QS), memoryless simplification (MS),
and our method (PS).

8. Conclusions

In this paper we described the punctuated simplification
approach for simplifying man-made objects. We argued that
previous simplification algorithms are in fact mainly appli-
cable to models that are dominated by smooth surfaces and
that for another large class of objects (that we call man-
made objects) they often fail to calculate meaningful results.
We demonstrated that the recognition and consistent re-
moval of features is essential to obtain good perceptual
quality for the simplified models. We presented an initial
algorithm to attack this problem and gave a visual compari-
son to previous methods.

We believe the simplification of man-made objects is an
essential problem, because these models are at the heart of
many visualization applications.

For future research, we envision several ways to extend
the implementation of the basic approach. Similar to other
level-of-detail algorithms, we plan to handle texturing and
view-dependent levels of details. Additionally, we think that
integration with other traditional simplification algorithms
would be important to obtain a complete system for simpli-
fication.

The major drawback of the current approach is that gen-
eral and robust feature detection is still a challenge. We
expect to study this question in the future.

Acknowledgments

This work is supported by the Department of Defense's

MURI program, administered by the Army Research Office.

Max (f orward)

0

0.02

0.04

0.06

Mean (f orward)

0

0.002

0.004

0.006

0.008

0.01

RMS (f orward)

0

0.005

0.01

0.015

Max (backward)

0.036

0.038

0.04

0.042

0.044

Mean (backward)

0

0.001

0.002

0.003

0.004

0.005

RMS (backward)

0

0.002

0.004

0.006

0.008

0.01

Max (f +b)

0

0.02
0.04

0.06
0.08

0.1

QS MS PS

Mean (f +b)

0

0.005

0.01

0.015

QS MS PS

RMS (f +b)

0

0.005
0.01

0.015
0.02

0.025

QS MS PS

QS MS PS QS MS PS QS MS PS

QS MS PS QS MS PS QS MS PS

Max (f orward)

0

0.05

0.1

0.15

0.2

Mean (f orward)

0

0.02

0.04

0.06

RMS (f orward)

0

0.02

0.04

0.06

0.08

Max (backward)

0

0.05

0.1

0.15

Mean (backward)

0

0.005

0.01

0.015

0.02

RMS (backward)

0

0.005

0.01

0.015

0.02

0.025

Max (f +b)

0

0.1

0.2

0.3

QS MS PS

Mean (f +b)

0

0.02

0.04

0.06

QS MS PS

RMS (f +b)

0

0.02
0.04

0.06
0.08

0.1

QS MS PS

QS MS PS QS MS PS QS MS PS

QS MS PS QS MS PS QS MS PS

Max (f orward)

0

0.05

0.1

0.15

0.2

Mean (f orward)

0

0.005

0.01

0.015

0.02

RMS (f orward)

0

0.01

0.02

0.03

0.04

0.05

Max (backward)

0

0.05

0.1

0.15

0.2

Mean (backward)

0.0015

0.0016

0.0017

0.0018

0.0019

0.002

RMS (backward)

0

0.002

0.004

0.006

0.008

0.01

Max (f +b)

0

0.05
0.1

0.15
0.2

0.25

QS MS PS

Mean (f +b)

0

0.005

0.01

0.015

0.02

QS MS PS

RMS (f +b)

0

0.02

0.04

0.06

QS MS PS

QS MS PS QS MS PS QS MS PS

QS MS PS QS MS PS QS MS PS

We would also like to acknowledge the support of NSF and
FWF grant number J2329-N04.

References

Bot02 M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt.

OpenMesh -- a Generic and Efficient Polygon Mesh Data Struc-
ture. OpenSG Symposium. 2002.

Coh98 Cohen, J., Olano, M., and Manocha, D. 1998. Appear-
ance-Preserving Simplification of Polygonal Models. Proc.
ACM SIGGRAPH 98, pp. 115-122. 1998.

Coo01 Volker Coors. Feature-Preserving Simplification in
Web-Based 3D-GIS. First International Symposium on Smart
Graphics, New York, 2001.

Els98 J. El-Sana and A. Varshney. Topology Simplification
for Polygonal Virtual Environments. IEEE Transactions on
Visualization and Computer Graphics v.4, n.2, April 1998, pp.
133-144.

Eri01 C. Erikson, D. Manocha, and W. V. Baxter III. HLODs
for Faster Display of Large Static and Dynamic Environments.
Symposium on Interactive 3D Graphics, pp. 111-120. 2001

Flo89 Leila De Floriani. Feature Extraction from Boundary
Models of Three-Dimensional Objects. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 11(8), pp. 785-798,
August 1989.

FRU01 C. Früh and A. Zakhor. 3D Model Generation for Cities
Using Aerial Photographs and Ground Level Laser Scans. Proc.
IEEE Computer Vision and Pattern Recognition, pp. 31-38.
2001.

Gad99 R. Gadh, Y. Lu, and T. J. Tautges. Feature Decomposi-
tion for Hexahedral Meshing. ASME Design Automation Con-
ference. 1999.

GAR97 M. Garland and P. Heckbert. Surface Simplification
Using Quadric Error Metrics. Proc. ACM SIGGRAPH 97, pp.
209-216. 1997.

Gar98 M. Garland and P. Heckbert. Simplifying Surfaces with
Color and Texture using Quadric Error Metrics. Proc. IEEE
Visualization 98, pp. 263-269. 1998.

Gav90 P. Gavankar and M.R. Henderson. Graph-Based Extrac-
tion of Protrusions and Depressions from Boundary Representa-
tions. Computer-Aided Design, 22(7), pp. 442-450. 1990.

Hop96 H. Hoppe. Progressive Meshes. Proc. ACM SIGGRAPH
96, pp. 99-108. 1996.

Hop97 H. Hoppe. View-Dependent Refinement of Progressive
Meshes. Proc. SIGGRAPH 97, pp. 189-198. 1997.

JAN03 Justin Jang, William Ribarsky, Christopher Shaw, and
Peter Wonka. Appearance-Preserving View-Dependent Visuali-
zation., IEEE Visualization 2003, pp. 473-480. 2003.

JEP96 Jepson, W., Liggett, R., and Friedman, S. Virtual Mod-
eling of Urban Environments. Presence, 5, 1, 72-86. 1996.

Kho03 Y. Kho and M. Garland. User-Guided Simplification.
Symposium on interactive 3D Graphics 2003. pp. 123-126.
2003.

Kim92 Y. S. Kim. Recognition of Form Features Using Con-
vex Decomposition. Computer Aided Design, 24(9), pp. 461-
476. 1992.

Kre00 Marc Van Kreveld, Mark Overmars, Otfried Schwarz-
kopf, Mark de Berg, and M. Van Kreveld. Computational Ge-
ometry. Springer Verlag. 2000.

LIN96 P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N.
Faust, and G. A. Turner. Real-Time, Continuous Level of Detail
Rendering of Height Fields. Proc. ACM SIGGRAPH 96, pp.
109-118. 1996.

LIN98 P. Lindstrom and G. Turk. Fast and Memory Efficient
Polygonal Simplification. Proc. IEEE Visualization '98, pp. 279-
286. 1998.

Lev02 J. Levenberg. Fast View-Dependent Level of Detail
Rendering using Cached Geometry. Proc. IEEE Visualization
2002, pp. 259-265. 2002.

Low97 K-L. Low and T.S. Tan. Model Simplification using
Vertex Clustering. Proc. ACM Symp. Interactive 3D Graphics,
pp. 75-82, 1997.

Lu99 Y. Lu, R. Gadh, and T. Tautges. Volume Decomposition
and Feature Recognition for Hexahedral Mesh Generation. 8th
International Meshing Roundtable, SAND99-2288, Sandia Na-
tional Laboratories, pp.269-280. 1999.

Lue01 David Luebke. A Developer’s Survey of Polygonal
Simplification Algorithms. IEEE Computer Graphics & Appli-
cations, pp. 24-35, May/June. 2001.

Mar90 M. Marefat and R. L. Kashyap. Geometric Reasoning
for Recognition of Three-Dimensional Object Features. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
12(10), pp. 949-965. 1990.

May04 Maya® version 6.0. April 9, 2004.
Par01 Y. Parish, and P. Mueller. Procedural Modeling of Cit-

ies. Proc. ACM SIGGRAPH 2001, pp. 301–308. 2001.
Poj03 Erik Pojar, Dieter Schmalstieg. User-Controlled Crea-

tion of Multiresoltion Meshes. Symposium on Interactive 3D
Graphics 2003. pp. 127-130. 2003.

Pra85 M. Pratt and P. R. Wilson. Requirements for Support of
Form Features in a Solid Modeling System. Technical Report R-
85-ASPP-01, CAM-I Inc., Arlington Texas, June 1985.

Rib01 J. Ribelles, P. Heckbert, M. Garland, T, Stahovich, and
V. Srivastava. Finding and Removing features from polyhedra.
ASME Design Engineering Technical Conferences. 2001.

Ros93 J. Rossignac and P. Borrel. Multi-resolution 3D Ap-
proximations for Rendering Complex Scenes. Geometric Model-
ing in Computer Graphics, pp. 455-465. 1993.

Sta04 The Stanford 3D Scanning Repository.
http://graphics.stanford.edu/data/3Dscanrep/ . 2004.

Wil03 N. Williams, D. Luebke, J. Cohen, M. Kelley, and B.
Schubert. Perceptually Guided Simplification of Lit, Textured
Meshes. Proc. 2003 ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics, Monterey, CA, pp.113-121. 2003.

Won03 Peter Wonka, Michael Wimmer, Francois Sillion, and
William Ribarsky. Instant Architecture, Proc. ACM SIGGRAPH
2003, pp. 669-678. 2003.

Woo82 T. Woo. Feature Extraction by Volume Decomposition.
CAD / CAM Technology in Mechanical Engineering. 1982.

Wu96 M. C. Wu, C. R. Liu. Analysis on Machined Feature
Recognition Techniques Based on B-rep. Computer-Aided De-
sign, 28(8), pp. 603-616. 1996.

