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Pablo Diaz-Gutierrez · Anusheel Bhushan · M. Gopi · Renato Pajarola

Single-strips for fast interactive rendering

Abstract Representing a triangulated two manifold using
a single triangle strip is an NP-complete problem. By in-
troducing a few Steiner vertices, recent works find such a
single-strip, and hence a linear ordering of edge-connected
triangles of the entire triangulation. In this paper, we extend
previous results [10] that exploit this linear ordering in ef-
ficient triangle-strip management for high-performance ren-
dering. We present new algorithms to generate single-strip
representations that follow different user defined constraints
or preferences in the form of edge weights. These functional
constraints are application dependent; For example, normal-
based constraints can be used for efficient rendering after
visibility culling, or spatial constraints for highly coherent
vertex-caching. We highlight the flexibility of this approach
by generating single-strips with preferences as arbitrary as
the orientation of the edges. We also present a hierarchical
single-strip management strategy for high-performance in-
teractive 3D rendering.
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Hamiltonian Cycle · Vertex Cache · Visibility Culling.
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Fig. 1 Top, from left to right: (a) The dual degree three graph of
the triangulation of a genus 0 manifold and a perfect matching shown
by dark edges. (b) The set of unmatched edges create disjoint cycles.
Two such cycles are shown. These disjoint cycles are connected to
each other by matched edges. The algorithm construct a spanning tree
of these disjoint cycles and hence choose matched edges that connect
these cycles. (c) Edge split operation: The triangle pair corresponding
to chosen matched edges in the tree are split creating two new trian-
gles. Matching is toggled around the new (nodal) vertices resulting in
a triangulation with a Hamiltonian cycle of unmatched edges. Bottom,
from left to right: (d-f) A generalized example of the same process
shown just on the dual graph. [19]

1 Introduction

Triangle strip representation of a model has been tradition-
ally used for efficient rendering. Most interactive render-
ing packages support direct rendering of alternating triangle
strips, in which vertices form triangles alternatively clock-
wise and counterclockwise. Vertex caching techniques to ren-
der these triangle strips improve coherence in memory ac-
cess and boost the performance further. A generalized tri-
angle strip is an edge-connected sequence of non-repeating
triangles. In order to correctly render such strips, non alter-
nating vertices might have to be repeated, or “swap” com-
mands have to be used if available. In the former case, the
number of sent vertices increases by roughly 50% on aver-
age. Recently, due to the availability of larger vertex cache
memories in the graphics accelerators, remarkable perfor-
mance increases can be achieved using generalized triangle
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strips. In this paper, we generate and manage generalized
triangle strips.

Finding a single generalized triangle strip covering the en-
tire model, without modifying the model, is NP-complete.
Hence, traditionally in computer graphics, multiple triangle
strips are used to represent a model. On the other hand, for
some applications it is not necessary to retain the original
vertices and connectivity, as long as the geometry and ap-
pearance remains the same. Along that line, recent works
[19,18] introduce a small number of additional triangles to
find a single strip representation, and hence a linear order-
ing of the triangles of the entire model. Applications of tri-
angle strip representations include generation of space fill-
ing curves [19] and fundamental cycles [18] on triangulated
manifolds, as well as unfolding of triangle strips for origami
[28].

Rendering triangle strips generally yields higher performance
with longer strips. However, this improvement becomes less
significant as the average strip length grows beyond a cer-
tain value. In this paper, we show the benefits of the linear
ordering of the triangles provided by the single strip repre-
sentation, which go beyond obtaining a higher frame rate by
reducing the number of rendered vertices. Some of these ad-
vantages include simplicity in the data structure, efficiency
in data management, elegance of the algorithms for high per-
formance rendering applications and even other applications
not necessarily linked to rendering, like mesh simplification
and compression [12].

Most computer graphics applications benefit from discard-
ing information that will not contribute to the final result. For
example, culling back-facing triangles can save about half of
the GPU bandwidth. Similarly, applications further increase
their performance by using triangle strips. Here we are pre-
senting a novel technique for efficiently culling back-facing
triangles while having the remaining ones form strips as long
as possible. We will see how the strips are used to improve
the way we do the culling and, reciprocally, the way back-
facing triangles are omitted helps maintaining long strips
that contain the front-facing triangles.

Specifically, the following are the main contributions of this
paper:

– We introduce a constraint-based single strip generation
algorithm that can generate a single strip maximizing a
functionally specified input constraint.

– We pose the back-face culling problem as a functional
optimization problem and find a single strip that maxi-
mizes the spatial locality of similar-oriented triangles.

– We translate the patterns in the strip required for maxi-
mal vertex caching into a space-filling curve generation
problem, and then cast it as a functional optimization
problem for single strip generation.

– We also present an efficient strip management technique
that uses the linear ordering of triangles provided by the
single strip for interactive 3D rendering.

– We illustrate the generality of the method in terms of its
ability to work with any arbitrary constraints, by com-
bining the above constraints to achieve a strip that is
designed both for smaller vertex cache-miss ratios and
faster back-face culling.

– Finally, we discuss under what circumstances our ap-
proaches for back-face culling or vertex cache improve-
ment perform worse than expected, and comment on pos-
sible solutions.

In this paper, we discuss the creation of single-strips using
the method from [19], its disadvantages and techniques to
improve by assigning weights to the edges (Section 3). We
formulate methods to assign these weights that would aid
efficient rendering of front-facing triangles as strips (Sec-
tion 4) and that would increase the vertex cache coherency
(Section 5). It is also possible to combine the edge weights
that are suitable for different applications to modulate and
achieve a new goal (Section 6). The results of our experi-
ments using these algorithms show a dramatic improvement
in rendering efficiency (Section 7).

2 Related Work

As mentioned above, we note that the basic problem of find-
ing an optimal set of triangle strips for a given triangula-
tion is NP-complete [13,15], and a large body of work has
addressed the problem of heuristics to minimize the num-
ber of triangle strips for static triangle meshes [1,16,2,37,
22,34,35]. Provably good and high-quality triangle strips
have been reported in [37] and the Tunneling approach [34].
For real-time, continuously adaptive multiresolution meshes
[27], it is much more important to compute a reasonably
good set of triangle strips fast than to compute the optimal
solution. In this context, methods such as SkipStrips [14],
but also [4,12] are based on an initial good stripification and
subsequent management (mainly shortening and strip merg-
ing) of incremental changes to the mesh, and hence the tri-
angle strips. To reduce the overall shortening and fragmenta-
tion of adaptive strips, DStrips [33] manages triangle strips
fully dynamically by locally growing, merging and partial
re-computation of strips.

By introducing some extra data points, the QuadTIN ap-
proach [30] allows the representation and triangulation of
any arbitrary irregular terrain height-field data set by one
single triangle strip. Moreover, it supports dynamic view-
dependent triangulation and stripification in real-time. How-
ever, QuadTIN [30] does not support nor maintain a spe-
cific initially given triangulation. Recent work on Single-
Strip representations [19,18,11] improves on that by finding
a single-strip representation of a given manifold using only
a small number of additional geometric primitives, whether
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these are triangles, quadrilaterals or tetrahedra. In [11], the
object of the stripification is not restricted to be a triangu-
lated manifold, and the perfect matching is used as a step to
find a 2-factor of a bounded degree graph. The work in [12]
shows how linear ordering of triangles can be used not only
for efficient interactive rendering, but also for mesh simplifi-
cation and compression. Using cones of normals for a cluster
of geometric primitives is common to several papers, like
[25,23], which uses them for mesh simplification through
vertex clustering.

Through the use of three vertex registers to hold tempo-
rary transformed geometry results, triangle strips have be-
come an effective tool to improve rendering performance of
large triangle meshes [1,29]. Extending this concept, the ef-
ficient use of extra vertex registers has not only been ex-
ploited in geometry compression [9,6] for bandwidth re-
duction, but also for improved rendering [21,5,38]. In [21],
multi-register vertex caching is used to increase the locality
of vertex references, which reduces geometry transfer and
transform costs significantly. Similarly to our approach, [38]
construct triangle strips that enhance the use of the vertex
cache, regardless of its size. Further, [5,36] also explore the
relationship between mesh locality and triangle strips.

The presented approach using a single-strip representation
of manifold triangle meshes seamlessly exploits extended
vertex registers for fast rendering, while allowing for effec-
tive visibility culling. The single-strip representation and the
high locality of its vertex referencing further allows for a
streaming-based rendering of large models.

3 Single-strip Creation

The problem of finding a single triangle strip is equivalent
to finding a Hamiltonian path in the dual graph of a mesh,
which as we said above is known to be an NP-complete
problem. However, if we allow addition of a few Steiner ver-
tices that do not change the geometric fidelity or the topol-
ogy, we can find a single triangle strip in polynomial time,
with the drawback that the size of the processed mesh is
larger after the stripification, due to the new vertices intro-
duced. However, experimental evidence shows that this in-
crease in the number of vertices is as low as 2%. The al-
gorithm presented by [19] is one such method that uses a
perfect graph matching algorithm on the dual graph of the
triangulated two manifold to create a single loop representa-
tion. Here, we briefly explain this algorithm for the sake of
completion.

A matching in a graph is pairing a vertex with exactly one of
its adjacent vertices. A perfect matching is one in which ev-
ery vertex of the graph is matched. It is known from [31] that
such a perfect matching exists for a 3-regular, 3-connected
graph, such as the dual graph of a manifold without bound-
ary. Findind a perfect matching in this dual graph implies
that every triangle in the original mesh is matched with ex-

actly one of its three edge-connected triangle neighbors. Tri-
angle strip loops can be formed by connecting every triangle
with its two unmatched neighbors. This yields not one, but
many disjoint strip loops.

Fig. 2 Edge swap operation. Two previously disjoint strips are merged
by re-triangulating around a separating edge.

Next, we use a fast greedy algorithm to iteratively join all the
separate loops into one. We do this by means of three oper-
ations, each of which takes two or more loops and merges
them. After describing these operations, we will outline the
greedy algorithm. The first loop merging operation, named
edge swap, consists of a re-triangulation of a pair of trian-
gles (as seen in Figure 2). A matched edge shared by two
triangles –which belong to different strips– is removed. Sub-
sequently, the two non common vertices from the affected
triangles are connected by a new matched edge. This is a
fundamental operation, because it is sufficient to merge all
the loops. Another advantage is that it does not introduce
new vertices to the mesh. The disadvantages come from the
geometric implications of this re-triangulation: If the trian-
gles across the edge are not coplanar, the surface represented
by this new triangulation will be different. Because of this,
edge swap should only be applied in planar regions and on
pairs of triangles that form a convex quadrilateral. Other-
wise, unacceptable model deformations could appear, such
as flipped faces and dents in the surface.

Fig. 3 A nodal vertex with (six) even number of incident triangles and
triangles belonging to three unique cycles. By switching the matched
and unmatched edges, all these cycles can be merged to a single cycle.
[19]

The second loop merging operation is called nodal vertex
processing. A nodal vertex with degree n is a vertex in the
original mesh where n is even and the number of differ-
ent loops incident on that vertex is n/2 (Figures 3 and 4).
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Fig. 4 Examples of non-nodal vertices. In both the examples, there are
six incident triangles but only two unique cycles. [19]

Around such a vertex, pairs of matched and unmatched tri-
angles alternate. Swapping the matched and unmatched edge
relationships around a nodal vertex merges all the incident
strip loops into one. This operation is generally preferred
because, unlike the other two operations, nodal vertex pro-
cessing merges loops without modifying the mesh geometry.

The third operation, edge split (see Figures 1c and 5), in-
troduces a Steiner vertex in the middle of the matched edge
shared by two triangles. This vertex is connected to the op-
posite vertex of each triangle, much like in the edge swap op-
eration, but without removing the initial matched edge. Note
that the new vertex is a nodal vertex with 4 adjacent edges,
so we can apply nodal vertex processing to join the loops.
Just like edge swap, this operation is sufficient to merge all
the loops into one. However, edge split does not modify the
appearance of the mesh, because the introduced vertex lies
exactly on the separating edge. Its main disadvantage is pre-
cisely the introduction of a new vertex in the mesh. In gen-
eral, operations that do not alter the mesh will be given pref-
erence, and we will usually use edge split when there is no
other option. A rule of thumb to decide when to use edge
swap or edge split is the following: If the two adjacent tri-
angles are coplanar, or have a normal deviation below a user
given threshold, edge swap is preferable. Otherwise, we will
use edge split.

The greedy loop merging algorithm starts by finding all the
initially valid loop merging operations. For each identified
operation we compute a priority number, and sort them in a
priority queue implemented as a skip list [32]. This priority
favors operations that do not modify the mesh, and penal-
ize those that introduce a larger geometric distortion. Op-
erations are popped one by one from the queue, and it is
checked whether they are still valid. A strip merging oper-
ation is valid if the loops it merges are disjoint. We use a
union-find data structure to keep track of which loops have
been already merged. Two operations are equivalent if they
merge the same set of triangle loops. When one operation is
applied, it invalidates all its equivalent operations which re-
main in the list. If the popped operation is valid, it is applied,
and when the implied loops are merged this is recorded in
the union-find data structure. The algorithm continues until
all the loops have been merged, or there are no more oper-
ations left in the queue. If the mesh is a manifold without

boundaries, there will be exactly one triangle strip loop for
each connected component of the manifold.

The main disadvantage of the above algorithm is that the di-
rection of the strip is not controllable. In other words, un-
like incremental strip growing algorithms [18], the above
strip loop creation method can be neither locally nor glob-
ally steered to satisfy certain constraints. In this paper we
introduce controllability to the above algorithm by using a
weighted perfect matching method. We show that by impos-
ing appropriate constraints for strip control we can achieve
well-behaved triangle strips, that exhibit excellent properties
for interactive high-performance rendering.

3.1 Weighted Perfect Matching

It can be shown that there are many different perfect match-
ings in the dual graph of a manifold without boundary, yield-
ing many different single strip loops. In order to control
the strip to satisfy certain properties, we have to control the
choice of matching in the dual graph of the mesh.

We use a weighted perfect matching algorithm to find a match-
ing that maximizes the sum of weights among the chosen
matched edges. Higher weights indicate an edge more desir-
able to be matched, and therefore excluded from the strip.
Maximizing the added weight of the chosen edges indirectly
minimizes the total weight of the non chosen edges, which
will form the single strip.

The weights of the edges of the graph (or of the edges of
the mesh) are carefully chosen according to the application
for which the strip is required. For example, to find a strip
suitable for back-face culling, we would like to have neigh-
boring triangles with similar normals to be the neighbors
in the strip. Hence, the neighboring triangle with maximum
normal deviation should be the matched triangle, thus that
corresponding edge in the dual graph should be assigned a
higher weight than the other two neighbors in order to be
picked as a matched neighbor.

Assigning appropriate weights, by itself, is not enough to get
the desired single strip. As in the case of the original algo-
rithm, the matching yields many disjoint strip loops, each of
which possibly satisfying the desired constraints. These dis-
joint loops have to be combined into one loop while still pre-
venting the strip from crossing high weight matched edges.

3.2 Joining Disjoint Loops

The three considered operations to merge strip loops –nodal
vertex processing, edge split and edge swap operations– re-
duce the overall weight of the chosen matched edges in the
dual graph and hence the solution will be sub-optimal. Our
goal is to limit this reduction of weight as much as possible
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Fig. 5 Triangles before splitting; the weight of the matched edge is
w. After splitting, the matched edge is duplicated, with same weight
w, and the new unmatched edges have weight 0. After nodal vertex
processing the reduction of weight is 2w.

while merging loops into a single loop. In order to do so, in
the greedy loop merging algorithm we modify the priority
or cost of each possible loop merging operation, before in-
serting them in the priority queue. In the unweighted version
of this algorithm, this cost simply penalized operations that
modify the mesh geometry. Now this cost must be also used
to reduce the loss of weight in the perfect matching after
applying the operations. Higher cost is given to operations
that would produce higher loss of weight. This way, the cost
of a nodal vertex processing operation would be the differ-
ence between the sums of the weights of the matched and
unmatched edges around the nodal vertex. The cost of an
edge split operation is twice the weight of the matched edge
to split (refer Figure 5) because this operation duplicates the
originally matched edge, thus doubling the overall weight.
Finally we set the cost of an edge swap operation as twice
the weight of the swapped edge. If the application supports
weight recalculation at loop merging time, the weight of the
new edge appearing after the operation would be subtracted
from the cost of the operation. However, these are general
guidelines that can be overridden, for example, if a partic-
ular application requires a merging operation to be always
preferred over another one.

The quality of the single strip created at the end of the algo-
rithm is based on the order of the operations in the priority
list. Variations of the above method to create different kinds
of single strip can be achieved by giving priority to differ-
ent loop-joining operations. For example, some applications
might have a higher cost associated with the addition of a
vertex. In this case, an edge split could be made more ex-
pensive than a nodal vertex processing.

Using weights as a means to indicate the type of single-strip
that we want gives the algorithm designer a great flexibil-
ity. For example, in order to compute the strips shown in
Figure 6, we simply assigned weights based on the orienta-
tion of the edges of the mesh: If we assign high weight to
mesh edges that are close to vertical and zero to the rest, we
get a single-strip which advances up and down, in the verti-
cal direction. Analogously, if we assign high weight to mesh
edges that are close to horizontal, and zero to the rest, we get
a single-strip which moves left and right, in horizontal direc-
tion. In the remaining sections, we look at a few applications
of the above constraint-based stripification. We show how

Fig. 6 Any weighing scheme can be used to indicate the preference
for a particular type of single-strip. In the first figure (left), horizontal
edges of the head model were assigned a high weight, while in the sec-
ond figure (right), vertical edges were similarly penalized. The results
are single-strips with different general orientation.

different weighing schemes lead to strips suitable for appli-
cations such as backface culling. Furthermore, we provide
a simple framework for combining many weighing schemes
to create one single strip satisfying multiple objectives.

4 Visibility culling

In the first application of our technique, we explain how to
create a triangle strip that is suitable for back face culling,
and develop techniques for the per-frame management of
the strip while performing the culling. We would like to
stress that in contrast to existing specialized visibility culling
algorithms, our emphasis is on a means for creating and
managing single triangle strips with the purpose of visibility
culling, such that the front facing triangles are still rendered
efficiently with long strips.

In this section, we first explain our scheme for assigning
weights to the edges that are appropriate for efficient back-
face culling. Then, we describe the data structure used to
store the single strip returned by the algorithm elaborated in
the previous section. Finally, we discuss the run-time man-
agement of this strip that integrates efficient back-face culling.

4.1 Calculating edge weights

A large category of visibility culling techniques group parts
of geometry into spatially coherent clusters. Later, visibility
is tested one cluster at a time, avoiding the cost of testing
every geometric primitive individually. In case of back-face
culling, the triangles are grouped based on their normal co-
herence. In the context of stripification, we would like the
strips to remain within the the planar regions as long as
possible. Next we will see how these two ideas (clustering
primitives for visibility testing and making the strip remain
within planar regions) complement each other.
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Stripification for the back-face culling application has two
advantages. First, long strips of triangles can be collectively
tested for visibility. If the entire strip is facing backwards, all
the triangles in the strip are culled. Second, all front facing
triangles can be rendered as a strip, as they are already orga-
nized in a linear order. Similarly, retaining the strip in planar
regions has two advantages. First, it enables collective ori-
entation testing for triangles in the form of long strips, and
second, when the strip is cut into pieces of front and back-
facing segments, the number of such required cuts is mini-
mized.

In order to achieve such a strip, suitable for back-face culling,
high weights are assigned to edges that define sharp fea-
tures of the mesh, while edges in planar regions receive low
weights. Such a weighing favors edges defining high cur-
vatures to be matched, and thus retaining the strip in the
low curvature region. Local decisions on the sharpness of
features might be misleading. For example, suitable refine-
ment of triangulation can disguise a high curvature region
into a low curvature region and vice-versa. Hence, robust al-
gorithms for feature detection base their decisions on global
analysis of the model. We perform such an analysis on the
model to cluster together triangles with similarly oriented
normals. The output of this clustering algorithm is the input
to our edge-weight assignment method.

Clustering Method: Identifying and building clusters of
triangles that have similarly oriented normals is a well stud-
ied problem ([17]). We use the Variational Shape Approxi-
mation (VSA) method, described in [7] that is popular for its
simplicity and good results in face clustering. But this itera-
tive method requires a reasonable initial estimate of cluster-
ing to converge quickly. For this we use a greedy approach to
initialize the clusters for a given bound on normal deviation.
The output of the VSA method is a clustering of triangles
based on normal deviation (see Figure 7(a)). The number of
clusters is dependent on an user-specified normal deviation
tolerance. Finally, some geometric information is gathered
from each cluster in order to aid efficient back-face culling.
We will see this in detail later in this section.

Deriving edge weights: The clusters produced by VSA rep-
resent regions through which the strip can grow without re-
strictions. Therefore, null weights will be assigned to edges
separating two triangles within the same cluster. On the other
hand, non-zero weights should be assigned to edges con-
necting triangles across different clusters. The value of these
weights indicates how undesirable it is to have the strip cross
the associated border between clusters (see Figure 7(b)). Al-
though all cluster boundaries represent sets of edges that
would rather be matched, this preference is stronger for cer-
tain boundaries. Edges shared by two adjacent clusters with
similar average normals receive a low weight, whereas edges
connecting clusters with very different normals get higher
weights. The reason is that it is preferable to have the strip
escape to an adjacent cluster with similar orientation that to
another with a dramatically different average normal.

Fig. 7 (a) Left: Triangle clustering based on normal deviation. Trian-
gles in the same cluster are shaded with the same color. Clusters min-
imize the normal deviation among the triangles contained. (b) Right:
Disjoint triangle strip loops before merging. The weight maximizing
edge matching produces strips that hardly cross the cluster boundaries.

Our experiments show that using the deviation angle as a
weight gives excessive importance to the highest weighed
edges, while completely neglecting those with not much lower
weight. The effect is that, in practice, all but the sharpest
boundaries are ignored. Instead, if we take the logarithm of
the cluster normal deviation as the actual edge weight, we
produce strips that cross sharp edges less often. Once the
edge weights are assigned, they are used to find the single
strip, as explained in Section 3.

Fig. 8 Removing outgoing peaks from a cluster of triangles. The iden-
tified outgoing peak (in dark on the left figure) is split, together with
an adjacent triangle inside the cluster. After the operation, no triangle
in the resulting cluster has two boundary edges, and it is possible to
reduce the number of times the strip crosses a cluster boundary (indi-
cated with a thick black line).

Though the weighted matching algorithm greatly reduces
the number of times the strip crosses the boundary of a clus-
ter (by maximizing the number of boundary edges in the
matching), there is a number of situations where such cross-
ing is unavoidable. One example occurs when a triangle has
two boundary edges, forcing at least one of them to be un-
matched and allowing the strip to escape the cluster through
it. This problem can be easily identified as a peak in the
cluster, or outgoing triangle. The solution (illustrated in Fig-
ure 8) is splitting the outgoing triangle together with its neigh-
bor from inside the cluster, at the cost of adding one vertex
and two new triangles to the mesh. Depending on the aver-
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age size of the clusters, and the number of strip crossovers,
this can mean a great improvement in the resulting strip
quality.

4.2 Segment-tree data structure

In order to use the single strip that we create as explained
in Section 3 in interactive rendering applications, we must
design an appropriate data structure to store and access this
strip. We use a static hierarchical data structure, similar to
the one described in [26], that stores in a node the result of
merging the strips contained in its children. Hence, the root
of the tree represents the segment composed of the whole
strip, and the leaves are the individual triangles of the mesh.
Different horizontal slices of the tree describe complete rep-
resentations of the strip, split in segments of varying granu-
larity.

Fig. 9 Information associated to each segment of the triangle strip:
Centroid of all vertices (c), bounding sphere radius (r), average face
normal (N) and radius of the cone that contains all normals (θ ).

We compute the following information for every node of the
tree, along with its starting and ending position in the single-
strip: Its average face normal N, the radius angle of the nor-
mal cone that contains all normals in the cluster θ , the cen-
troid c of all vertices and the radius r of the smallest bound-
ing sphere centered at c (Figure 9). All this information will
be used for visibility testing at rendering time. Although it is
not discussed here, the bounding sphere associated to each
cluster can be used to perform frustum culling, if the hierar-
chical data structure is constructed appropriately.

The described segment-hierarchy has the desirable property
that each node completely contains its two child segments,
and nothing else. In other words, if a non-leaf segment-node
starts at triangle A and ends at triangle B, its two children
nodes must represent two consecutive triangle strips, the first
one starting at A and the second one ending at B (see Fig-
ure 10(a)). We can make use of this property to perform

A B

A+B

t+1t

Fig. 10 (a) Left: The segment-tree data structure. Each tree node rep-
resents one segment of the single-strip. The union of all nodes at any
given level comprises all the triangles in the model, with different gran-
ularity. The root node represents the whole single-strip. Note that the
number of triangles in each node at the same level in the tree need not
be the same. (b) Right: Evolution of the render front. As the interac-
tive rendering progresses, some visible regions become back-facing,
and vice-versa. The small differences between render fronts at succes-
sive iterations suggest storing this information to speed up rendering.

a recursive tree traversal and globally discard large, coher-
ent back-facing portions of the triangle strip with just a few
computations, without directly processing the individual tri-
angles.

It can be argued that this hierarchical data structure ought to
be balanced to enable the most efficient query times. How-
ever, generic tree balancing techniques are not applicable in
our case. The reason is that, in general and for most models,
not all visibility tests are equally likely. Visibility tests con-
centrate at the current silhouette of the model. Further, edges
with higher curvature are more likely to be part of the sil-
houette than edges in planar areas of the model. These edges
with high curvature should be accessible faster than others,
hence should be closer to the root in the hierarchy. Since we
construct the tree in a bottom-up manner, first merging parts
of the mesh with low normal deviation, planar regions are
grouped first, and regions separated by high curvature edges
are not merged until the last stages of the construction. Thus
our method for constructing the hierarchical data structure
naturally provides short access time for the most frequent
visibility queries.

4.3 Segment-tree traversal

Nodes in the hierarchical data structure described in the pre-
vious section tend to contain contiguous strip segments com-
posed of triangles with similar normals. We use this to our
benefit, discarding or accepting large portions of the strip
by only calculating a dot product. The most basic version
of the rendering algorithm starts a recursive process at the
root of the tree. For each node n, its average normal and
normal-deviation angle are used to determine if the associ-
ated segment is (a)completely front facing, (b)completely
back-facing or (c)somewhere across the silhouette of the ren-
dered model. If the result is either (a) or (b), then the seg-
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Fig. 11 Real time back-face culling in the sphere model. The bar in-
dicates rendered parts of the single-strip, which are rendered, in dark
color, and culled parts in light color. The high spatial coherence ob-
served in the single-strip allows culling many triangles with few cuts.

ment is accepted or discarded, respectively. If the segment
can not be classified cleanly (case c), we go one step down
in the hierarchy and test its two children independently. This
process will continue down the tree until the processed seg-
ment is either discarded or accepted for rendering, or until
the segments are so small that it is affordable to render them
without further testing. In Figure 11 we represent the single
strip as a colored horizontal band. Dark shaded segments
in the band represent rendered triangles in the strip, while
light segments indicate culled triangles. The coherence in
the coloring of this band, which remains high during contin-
uous movement of the viewpoint, demonstrates the relatively
small number of visibility tests performed. A more quantita-
tive evaluation of the strip coherence is given in Section 7.

In interactive applications, the difference in the position and
orientation of the viewer in the displayed scene changes only
gradually. Hence the sets of rendered and discarded seg-
ments will be very similar in consecutive frames. In order
to exploit this coherence, we can avoid traversing the whole
tree every frame by storing a rendering front, consisting of
the lowest set of checked nodes from the last frame. In suc-
cessive iterations, the process starts at the nodes in the ren-
dering front, rather than at the root. Depending on the new
point of view, these nodes are then split into their children, or
merged up with their siblings, as represented in Figure 10(b).
It is likely that most of the nodes in the rendering front will
remain unmodified across a number of frames, thus saving
traversal time.

4.4 Results

It is known that the advantage of reducing the number of tri-
angle strips –as a means for limiting the bandwidth between
CPU and graphics hardware– wanes as the total number of
strips reduces. This is because the amortized cost of starting
a new strip becomes less important with longer strips. How-
ever, keeping a single-strip along with a hierarchical struc-
ture of strip segments (Section 4.2) makes the cost of access-
ing a segment section logarithmic on the number of faces. If,
instead of a single strip, we maintain m separate strips and
their associated structures, the access cost becomes m log n

m ,
rising towards linear cost as m approaches the number of tri-
angles n. This is a clear disadvantage if we want to use the
strips as Furthermore, the results in Table 3 show an increase
in the frame-rates obtained for all the models when con-
straints are applied to aid visibility culling, which demon-
strates the utility of such constraints.

We have experimented with models of mostly smooth sur-
faces. In spite of using global clustering algorithms, rougher
surfaces, with plenty of high curvature features, produce many
small clusters, not so useful for efficient visibility testing.
In other words, high frequency changes in the curvature re-
duce the quality of the strip when used for back-face culling.
However, running a smoothing filter, such as a Laplacian fil-
ter, on the value of the normals used for weighing easily
solves the problem.

5 Transparent vertex caching

In our second application, we construct triangle strips with
improved vertex caching usage. Most modern graphics pro-
cessors have a vertex cache to reduce the data movement,
benefiting from the locality in vertex references. Transpar-
ent cache optimization as in [21] refers to reordering the strip
to maximize the access to vertices already in cache. In this
section, we present a weighing heuristic that produces a sin-
gle strip, presenting reasonably good vertex cache behavior
for an arbitrary cache size.

We provide an interesting insight that forms the foundation
for creating strips with high vertex cache coherence. The
edges in the triangulation that the strip does not cross can
be considered as the ”medial axis” of the strip. It is impor-
tant to note that for a single-loop representation of the man-
ifold, this medial axis is a spanning tree of the vertices of
the triangulation (or two trees in case of genus zero objects).
The strip actually loops around the vertices of the triangula-
tion that form the leaves of this medial axis tree, inducing a
high vertex cache coherence for that particular vertex. Hence
maximizing the number of leaf vertices of the medial axis
tree increases the overall cache coherence.

It is our goal to find a medial axis with the maximum possi-
ble number of leaves. Although a few algorithms have been
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Fig. 12 Left to right and top to bottom: (a) Spanning tree of mesh
edges, used to produce strips with low cache-miss ratio. Edges in the
tree receive positive weight, and the rest get weight zero. (b) The pro-
duced single strip is superimposed on the spanning tree. (c) We substi-
tute the spanning tree with the medial axis of the single strip. (d) Dark
edges highlight the few differences between medial axis from ’c’ and
spanning tree from ’a’.

Fig. 13 Left: Single-strip on fandisk model, as constructed for back-
face culling. Right: Cache-oriented single-strip on same model. Notice
the strip locality is much higher than in the other case.

proposed in the literature to find acyclic subgraphs with min-
imum number of non-leaves [20] and on the equivalent prob-
lem of maximizing the number of leaves [24], these algo-
rithms are difficult to implement. We observed that the fol-
lowing simple heuristic worked well enough. A breadth first
spanning tree with low depth and large fan-out would maxi-
mize the number of leaf vertices and hence the vertex cache
coherence. This property is exhibited by classical closed space
filling curves like Sierpinski’s. Its medial axis emulates a
breadth first tree (refer to Figure 12). The medial axis of the
strip loop in the triangulation corresponds to the matched
edges in the dual graph. To summarize, if the sequence of
matched edges in the triangulation emulates a breadth-first
tree, then the strip that goes around it would emulate a space
filling curve and hence will have high vertex caching proper-
ties. We use this observation in our algorithm to find a suit-
able strip.

We build a breadth-first tree on the edges of the mesh, im-
itating the medial axis of a space filling curve. Our inten-
tion is to have the edges in this tree as matched edges. This
forces the strip to follow the shape of a space filling curve
whose medial axis is the computed breadth-first tree. Since
each triangle will have exactly one matched edge, and we
want as many of the edges to be matched, no more than
one edge per triangle can be part of the breadth-first tree.
Edges in the tree receive positive weights, and the rest get
the weight zero. The weight-maximizing perfect matching
chooses most of these non-zero weighted edges following
the shape of the breadth first tree, which ensures the result-
ing single-strip will have good vertex locality.

5.1 Results

Fig. 14 Two versions of the spanning tree used for vertex cache op-
timization of single-strips, and the close-up on the resulting strips.
Top-left: Breadth-first spanning tree. The high regularity of the head
model produces long branches without bifurcation, taking a toll on the
cache efficiency. Top-right: Randomized breadth-first spanning tree.
It grows in an irregular fashion, producing shorter branches and more
leaves. This reduces the cache-miss ratio of the resulting strip. Bottom-
left: Strip resulting from breadth-first spanning tree method. Notice the
low vertex locality. Bottom-right: Strip resulting from randomized
breadth-first spanning tree method. The vertex locality is noticeable
superior.

In most triangle meshes, the breadth-first tree growing pro-
cedure produces short branches with many bifurcations, and
therefore many leaves, suitable for high vertex cache coher-
ence stripification. However, this structure cannot always be
generated with the simple spanning tree method. There are
many triangle models obtained from height fields, for which
each position in a regular 2D grid receives a height value.
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These meshes are extremely regular, and growing a spanning
tree in a breadth-first manner might produce very few leaf
nodes (see Figure 14). The single-strip obtained using this
medial axis will have a very low cache-hit ratio. We solve
this problem by introducing randomization in choosing the
next edge to be added while growing the breadth-first tree.
This breaks the symmetry in the deterministic tree growing
algorithm and introduces many branches, and hence leaves
in the structure.

An advantage of generating a space filling strip is that it
shows good caching behavior irrespective of the cache size.
Thus, the same strip will exhibit good cache behavior for
different cache sizes. The cache-size independence is a de-
sirable feature because it eliminates the need for the appli-
cation programmer to know the details of the system where
the program will be deployed. While knowledge about the
actual cache size enables some improvements [21], explicit
optimization for a given cache size can result in highly non-
optimal behavior for other cache sizes. With graphics hard-
ware vendors restricting information on their designs, and
an increasingly large number of available GPU models, we
expect such feature to gain further attention. The strips ob-
tained with our cache-size independent optimization method
achieve cache-miss rates (number of vertex-cache misses di-
vided by the number of triangles) near those obtained by
[21], with the difference that we do not assume anything
about the size of the vertex cache. We also observe that [5]
indicates comparable results. For example, with a cache size
of 32 vertices, while [5] reports an average cache miss ra-
tio between 0.6 and 0.68 for various models, our algorithm
exhibits a value between 0.66 and 0.7. Our results indicate
that for commonly used cache sizes, a large percentage of
vertices need to be fetched only once.

Figure 15 plots the cache-miss ratios for the single-strips
of three models, obtained with different weighing schemes
(unconstrained strip, spanning tree of edges and randomized
spanning tree). In all three cases, and for all reasonable cache
sizes, our two cache-optimized strips produce significantly
lower cache-miss ratios than the unconstrained strip. No-
tice that the theoretical lower limit for this ratio is 0.5. The
heuristic followed by our optimization methods comes from
the following: By increasing the locality of the single strip,
we reduce the average distance between successive appear-
ances of the same vertex. When using a FIFO replacement
policy, vertices whose distance between instances is equal or
lower than d will cause no more than one unavoidable cache
miss in a cache of size d or larger. It has been shown in [3]
using an asymptotically optimal algorithm, that with a cache
size of 12.72

√
n, all n vertices are guaranteed to be in the

cache. For the same cache-size, we observe that we achieve
90% of this optimal performance, even though we do not
know the specific cache-size beforehand.

Fig. 15 Cache-miss ratio for the single-strips of three models (Fandisk,
Head and Happy), obtained in three different ways: Unconstrained
strips, with the spanning tree method, and with the randomized span-
ning tree method. In all cases, the randomized version of our optimiza-
tion performs better. Notice the specially large difference for the pop-
ular cache sizes of 16 and 32 vertices.

6 Combining multiple targets

We have presented weighting schemes that are used to find a
single-strip maximizing different functional constraints like
face normal coherence and vertex-cache hit-ratio. However,
finding a single-strip that maximizes multiple constraints si-
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multaneously is a much more common scenario. For ex-
ample, interactive rendering of large models would bene-
fit from both reduced vertex cache-miss ratio and efficient
visibility culling. Modifying a strip generation procedure to
satisfy multiple constraints can be a much harder problem.
The biggest advantage of our stripification method is that it
is a two stage process in which the first stage consists of
the user providing with the weights for the mesh edges, and
in the second stage the stripification is performed (see Fig-
ure 16). Although the quality of the resulting strip is only as
good as the scheme and accuracy of the weighting that the
user chooses, the stripification algorithm itself is indepen-
dent of both the weighting scheme and the assigned weights.
If there are multiple, possibly contradicting, constraints then
the user’s weighting scheme should appropriately combine
the constraints and assign numeric values to the mesh edges
that reflect the relative importance of these constraints. In
our experiments, we computed the actual weight as a linear
combination of the weights from each constraint.

Fig. 16 Single-strip creation pipeline. The process comprises two
stages. In the first one a weight is assigned to each edge, which pro-
duces a set of disjoint triangle strip loops. In the second stage, these
loops are merged into one.

There is another interesting application of combining multi-
ple weighing schemes. In back-face culling, the edges of the
triangles belonging to planar regions receive zero weights,
as the normal deviation across those edges is zero. Such a
weight assignment drives the perfect matching algorithm for
an exhaustive search to identify a critical point in the op-
timizing functional. A similar situation happens with many
geometric optimization algorithms and in those cases ran-
dom perturbation of the input data is a commonly used ap-
proach to bail the algorithm out of exhaustive search. Sim-
ilarly, for the edges in the planar region, addition of small
white noise to their weights tremendously accelerates the
termination of the algorithm with almost no penalty to the
quality of the resulting strip. For example, we saw the match-
ing algorithm reducing its run time from more than 10 min-
utes to about 30 seconds, when random noise was added to
the edge weights of the Happy Buddha model. Similar im-
provements were noticed with other models.

7 Implementation and Discussion

The creation time of the single strips was dominated by two
principal algorithms: Perfect matching –common to all strips–
and face clustering with Variational Shape Approximation

–used for back-face culling. The efficiency of the matching
method we used [8] is sufficient for processing meshes of
size in the order of a million triangles in a few minutes,
running on a current desktop computer. Treatment of sig-
nificantly larger models needs an off-core approach to be
practical. The face clustering algorithm runs in time com-
parable to that of perfect matching, empirically showing a
super-linear time to convergence (see Table 1).

We estimated the run-time improvement provided by our
method on a set of standard models (Figure 19) represent-
ing manifolds without boundary. To do so, we moved the
camera in ascending spirals around the center of the mod-
els, as shown in Figure 17, rendering each model 591 times.
All models were rendered using OpenGL vertex buffer ob-
jects. Tables 2 and 3 show the measured average frame-rates,
applying different constraints to the strip generation. In the
results, we observe the largest performance increase with the
medium models, when using strips optimized both for cache
coherence and back-face culling. Interestingly, the larger mod-
els show proportionally less improvement, probably due to
memory thrashing.

We have calculated the frame rates at which we can render
our triangle strips, and used this as a measure of the quality
of the strips. However, this method depends on the efficiency
of our ad-hoc rendering system. It would be more appropri-
ate to find a magnitude that can be evaluated independently
of the implementation of the culling algorithm, and the ma-
chine used. A sensible measure that meets those properties
is the number of continuous strip segments being rendered.
Given a back-face culling algorithm, a strip is well posed
for back-face culling if it can be appropriately along the sil-
houette of the model using only few cuts. Therefore, when
producing a single-strip suitable for back-face culling, our
goal is to reduce the number of strip cuts at rendering time,
while keeping the number of total vertices rendered low. In
Table 4 we show the average number of strips rendered for
several models when the camera moved along the spiral path
of Figure 17, always looking towards the origin (center of

Model #triangles Face Perfect
clustering matching

Sphere 1280 1 0
Cylinder 4880 2 1.5
Trico 5660 2 1
Fandisk 12946 9 1
Head 32744 14 2.5
Horse 96966 48 7.75
Happy 100000 32 120
Balljoint 274120 132 13
Armadillo 345944 210 50
Balljoint x4 1096480 593 103
Armadillo x4 1383776 991 828

Table 1 Preprocessing time: Average time (in seconds) spent in the
two main preprocessing stages of our algorithm: Mesh face clustering
for back-face culling optimization, and graph perfect matching of the
dual graph.
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Model #triangles a b
Unconstrained Span. tree

Sphere 1280 1951 1965
Cow 2218 1414 1486
Cylinder 4880 1181 1192
Fandisk 12946 537 733
Head 32744 226 227
Horse 96966 131 148
Happy 100000 110 117
Balljoint 274120 29 31
Armadillo 345944 24 25
Balljoint x4 1096480 9.2 10.2
Armadillo x4 1383776 6.33 6.80

Table 2 Rendering frame rates: The single-strips were obtained
in the following manners: a) Unconstrained strips. b) Spanning tree
method. All models were rendered in a Pentium-4 2.4 GHz running
GNU/Linux with a NVidia PNY 980XGL Quadro 4 video card.

Model #triangles a b
Unconstrained Bf. culling

Sphere 1280 1760 3069
Cow 2218 1658 1751
Cylinder 4880 1181 1988
Fandisk 12946 538 1207
Head 32744 226 290
Horse 96966 31 93
Happy 100000 63 59
Balljoint 274120 18 34
Armadillo 345944 14.84 18.52
Balljoint x4 1096480 4.59 9.47
Armadillo x4 1383776 3.77 6.4

Table 3 Rendering frame rates: The single-strips were obtained in
the following manners: a) Unconstrained strips. b) Optimizing for
back-face culling. All models were rendered in a Pentium-4 2.8 GHz
running GNU/Linux with a NVidia GeForce FX 5900 video card.

the model). In all cases the back-face optimized strip needed
fewer cuts before being sent for rendering. Similarly, this
phenomenon can be observed directly if we represent in a
colored bar the parts of the single strip which are rendered or
culled, like in Figure 18. As expected, the lower number of
cuts in the strip results in a more compact set of dark bands
in the figure, representing fewer and longer strip segments
being rendered.

Model #triangles W/ Bf. opt W/o Bf. opt

Cow 2218 56 62
Cylinder 4880 69 86
Fandisk 12946 35 101
Head 32744 178 221
Balljoint x4 1096480 3453 3886
Armadillo x4 1383776 3744 4498

Table 4 Strip coherence during backface culling: Average number
of strips rendered for some models when strips were computed with
and without back-face culling optimization. The lower number of strips
in the first column indicates that in all cases the backface-optimized
strips are better suited for quick culling than the unconstrained strips.

Fig. 17 Camera path used for measuring rendering frame rates. 591
frames are taken with the camera at the indicated positions in the as-
cending spiral, and looking towards the origin, at the center of the ob-
ject.

Fig. 18 Representation of the rendered and culled strips at a given mo-
ment while rendering the fandisk model. Dark segments of the bars in-
dicate parts of the strip which were rendered; Light segments indicate
culled parts of the single-strip. Top: Using a back-face culling opti-
mized strip. Bottom: Using an unconstrained strip. The higher strip
segment coherence in the first, optimized strip is apparent.

8 Conclusion and Future Work

In this paper, we introduced a generic method for construct-
ing constrained single-strips from a manifold mesh without
boundaries. We have presented two mesh processing tech-
niques that benefit directly from the use of constrained sin-
gle strips. Finally, we outlined how multiple weighing tech-
niques can be combined to obtain a single-strip under multi-
ple constraints.

Most models we have experimented with in this paper (Fig-
ure 19) may fit completely into on-board video memory of
the latest consumer graphics cards. However, larger models
require a view-dependent vertex-buffer management. Some
investigation can be done on different priority schemes for
loading segments of the strip on the GPU, so that parts of
the strip that are expected to be required soon remain in the
memory of the graphics hardware. Even off-core data could
be tackled this way, with an appropriate paging mechanism.
A key part of any off-core stripification algorithm designed
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Fig. 19 Some of the triangle meshes used in our work: Top: Fandisk,
Cylinder, Cow. Bottom: Balljoint, Armadillo, Horse.

for gigantic meshes is handling the boundaries generated by
the subdivisions that make the model manageable. The pres-
ence of boundaries adds a new level of complexity to the
stripification procedure, and poses an interesting challenge.

Finally, weighing schemes can be devised aimed at mini-
mizing the frequency of changes in vertex properties such as
normal, color or material along the strip. Then standard com-
pression techniques could be applied directly on the vertices
of the single strip. Moreover, encoding the position of con-
secutive vertices in the strip would require fewer bits, given
the expected reduction in the intermediate distances.
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