Skip to main content
Log in

Accelerating subsurface scattering using Cholesky factorization

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper we present a simplified subsurface scattering model that exploits a diffusion mechanism to provide a simpler solution to the transport equation. Our model is based on numerical analysis techniques that are amenable to Cholesky factorization. We treat the factorization as a precomputed scattering quantity which can be used to significantly speed up multiple scattering calculations as the global light source changes. On low resolution meshes, we have been able to achieve real-time solutions of the subsurface scattering while still maintaining good visual quality of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baranoski, G., Rokne, J.: A simplified model for light interaction with plant tissue. In: Eighth International Conference on Computer Graphics and Visualization – GraphiCon’98, pp. 154–161 (1998)

  2. Blinn, J.F.: Light reflection functions for simulation of clouds and dusty surfaces. Computer Graphics pp. 21–29 (1982)

  3. Carr, N., Hall, J., Hart, J.: Gpu algorithms for radiosity and subsurface scattering. In: HWWS ’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pp. 51–59. Eurographics Association, Aire-la-Ville, Switzerland (2003)

    Google Scholar 

  4. Chandrasekhar, S.: Radiative Transfer. Dover Publications, Inc. (1960)

  5. Dachsbacher, C., Stamminger, M.: Translucent shadow maps. In: Proceedings of the 14th Eurographics workshop on Rendering, pp. 197–201. Eurographics Association (2003)

  6. Dorsey, J., Hanrahan, P.: Modeling and rendering of metallic patinas. In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp. 387–396. ACM Press (1996)

  7. Haber, T., Meterns, T., Bekaert, P., Reeth, F.V.: A computational approach to simulate subsurface light diffusion in arbitrarily shaped objects. In: Graphics Interface (2005)

  8. Hanrahan, P., Krueger, W.: Reflection from layered surfaces due to subsurface scattering. In: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, pp. 165–174. ACM Press (1993)

  9. Ishimaru, A.: Wave Propagation and Scattering in Random Media. Academic Press, New York (1978)

    Google Scholar 

  10. Jensen, H.W.: Realistic Image Synthesis using Photon Mapping. AK Peters (2001)

  11. Jensen, H.W., Buhler, J.: A rapid hierarchical rendering technique for translucent materials. SIGGRAPH 21(3), 576–581 (2005)

    Google Scholar 

  12. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, pp. 511–518. ACM Press (2001)

  13. Johnson, C.C.: Optical diffusion in blood. In: IEEE Trans., pp. 129–133 (1970)

  14. Kajiya, J., Von Herzen, B.: Ray tracing volume densities. In: H. Christiansen (ed.) Computer Graphics (SIGGRAPH ’84 Proceedings), vol. 18, pp. 165–174 (1984)

  15. Kajiya, J.T.: The rendering equation. In: SIGGRAPH ’86, pp. 143–150. ACM Press (1986)

  16. Karypis, G.: Metis: Family of multilevel partitioning algorithms. http://www-users.cs.umn.edu/∼karypis/metis/

  17. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  18. Kniss, J., Premoze, S., Hansen, C., Ebert, D.: Interactive translucent volume rendering and procedural modeling. In: Proceedings of the conference on Visualization ’02, pp. 109–116. IEEE Computer Society (2002)

  19. Kniss, J., Premoze, S., Hansen, C., Shirley, P., McPherson, A.: A model for volume lighting and modeling. IEEE Trans. Vis. Comput. Graph. 9(2), 150–162 (2003)

    Article  Google Scholar 

  20. Max, N.L.: Efficient Light Propagation for Multiple Anisotropic Volume Scattering. In: Fifth Eurographics Workshop on Rendering, pp. 87–104. Darmstadt, Germany (1994). URL citeseer.nj.nec.com/max94efficient.html

  21. Mertens, T., Kautz, J., Bekaert, P., Seidelz, H., Van Reeth, F.: Interactive rendering of translucent deformable objects. In: Proceedings of the 14th Eurographics workshop on Rendering, pp. 130–140. Eurographics Association (2003)

  22. Panfilov, A.V., Holden, A.V. (eds.): Computational Biology of the Heart. John Wiley &Sons (1997)

  23. Prahl, S.A.: Light transport in tissue. Ph.D. thesis, University of Texas at Austin (1988)

  24. Riley, K., Ebert, D., Hansen, C., Levit, J.: Visually accurate multi-field weather visualization. In: Proceedings IEEE Visualization, pp. 279–286 (2003)

  25. Rushmeier, H., Torrance, K.: The zonal method for calculating light intensities in the presence of a participating medium. Comput. Graph. (SIGGRAPH ’87 Proceedings) 21(4), 293–302 (1987)

    Article  Google Scholar 

  26. Sharp, R., Machiraju, R.: A simplified model for inhomogeneous subsurface scattering. In: Volume Graphics, pp. 63–72. EuroGraphics/IEEE Computer Society VGTC (2005)

  27. Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: SIGGRAPH (2002)

  28. Stam, J.: Multiple scattering as a diffusion process. In: Proceedings of the 6th Eurographics Workshop on Rendering, pp. 51–58. Dublin, Ireland (1995)

  29. Toledo, S., Chen, D., Rotkin, V.: Taucs: A library of sparse linear solvers. http://www.tau.ac.il/∼stoledo/taucs/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Sharp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharp, R., Machiraju, R. Accelerating subsurface scattering using Cholesky factorization. Visual Comput 22, 541–549 (2006). https://doi.org/10.1007/s00371-006-0029-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0029-z

Keywords

Navigation