Skip to main content
Log in

PTK: A novel depth buffer-based shape descriptor for three-dimensional object retrieval

  • Regular Paper
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The increase in availability and use of digital three-dimensional (3D) synthetic or scanned objects, makes the availability of basic database operations, such as retrieval, necessary. Retrieval methods are based on the extraction of a compact shape descriptor; the challenge is to design a shape descriptor that describes the original object in sufficient detail to make accurate 3D object retrieval possible. Building on previous work, this paper proposes a novel depth buffer-based shape descriptor (called PTK) that encompasses symmetry, eigenvalue-related weighting and an object thickness related measure to provide an accuracy surpassing previous state-of-the-art methods. An evaluation of the novel method’s parameters and a direct comparison to other approaches are carried out using publicly available and widely used databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ankerst, M., Kastenmüller, G., Kriegel, H.P., Seidl, T.: 3D shape histograms for similarity search and classification in spatial databases. In: Proc. of 6th International Symposium on Spatial Databases, pp. 207–226. Springer, Hong-Kong, China (1999)

    Google Scholar 

  2. Chen, D., Tian, X., Shen, Y., Ouhyoung, M.: On visual similarity based 3D model retrieval. Eurographics 22(3), 223–232 (2003)

    MATH  Google Scholar 

  3. Everitt, C.: Interactive order-independent transparency. Tech. Rep., NVIDIA Corporation (2001)

  4. Frome, A., Huber, D., Kolluri, R., Bulow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Proc. of the European Conference on Computer Vision. Springer (2004)

  5. Gu, X., Gortler, S., Hoppe, H.: Geometry images. In: Proc. of SIGGRAPH, pp. 355–361. ACM Press, San Antonio, TX (2002)

    Chapter  Google Scholar 

  6. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proc. of SIGGRAPH, pp. 203–212. ACM Press, Los Angeles, CA (2001)

    Google Scholar 

  7. Hlavaty, T., Skala, V.: A survey of methods for 3D model feature extraction. Seminar on Geometry and Graphics in Teaching Contemporary Engineer (2003)

  8. http://mathworld.wolfram.com/

  9. Kazhdan, M.: Shape representations and algorithms for 3D model retrieval. Ph.D. thesis, Princeton University (2004)

  10. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proc. of Eurographics Symposium on Geometry Processing, pp. 167–175. Aachen, Germany (2003)

  11. Krüger, T., Wickel, J., Alvarado, P., Kraiss, K.: Feature extraction from VRML models for view-based object recognition. In: Proc. of the 4th European Workshop on Image Analysis for Multimedia Interactive Services, pp. 391–394. London (2003)

  12. Laga, H., Takahashi, H., Nakajima, M.: Geometry image matching for similarity estimation of 3D shapes. In: IEEE Proc. of Computer Graphics International, pp. 490–496. Crete, Greece (2004)

  13. Osada, R., Funkhauser, T., Chazalle, B., Dobkins, D.: Matching 3D models with shape distribution. ACM Trans. Graph. 21(4), 807–832 (2002)

    Article  Google Scholar 

  14. Papaioannou, G., Karabassi, E., Theoharis, T.: Reconstruction of three-dimensional objects through matching of their parts. IEEE Trans. Patt. Anal. Mach. Intell. 24(1), 114–124 (2002)

    Article  Google Scholar 

  15. Passalis, G., Kakadiaris, I., Theoharis, T.: Efficient hardware voxelization. In: IEEE Proc. of Computer Graphics International, pp. 374–377. Crete, Greece (2004)

  16. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Proc. of Shape Modeling International. IEEE Computer Society, Genova, Italy (2004)

  17. Siarry, P., Berthiau, G., Durbin, F., Haussy, J.: Enhanced simulated annealing for globally minimizing functions of many-continuous variables. ACM Trans. Math. Software 23(2), 209–228 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Strang, G.: Linear Algebra and its Applications, 3rd edn. Harcourt Brace Jovanovich, San Diego, CA (1988)

    Google Scholar 

  19. Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton-based shape matching and retrieval. In: Proc. of Shape Modelling, pp. 130–142. IEEE Computer Society, Seoul, S. Korea (2003)

    Chapter  Google Scholar 

  20. Vajramushti, N., Kakadiaris, I.A., Theoharis, T., Papaioannou, G.: Efficient 3D object retrieval using depth images. In: Proc. of the 6th ACM SIGMM International Workshop on Multimedia information, pp. 189–196. New York, USA (2004)

  21. Vranic, D.: Content-based classification of 3D-models by capturing spatial characteristics. http://merkur01.inf.uni-konstanz.de/CCCC/

  22. Vranic, D.: 3D model retrieval. Ph.D. thesis, Leipzig University (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geogios Passalis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passalis, G., Theoharis, T. & Kakadiaris, I. PTK: A novel depth buffer-based shape descriptor for three-dimensional object retrieval. Visual Comput 23, 5–14 (2007). https://doi.org/10.1007/s00371-006-0037-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0037-z

Keywords

Navigation