Skip to main content

Advertisement

Log in

Geometrically based potential energy for simulating deformable objects

  • Special Issue Paper
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a fast and stable technique for simulating deformable objects. Unlike in previous physically based methods, our potential energy of deformation is purely geometrically based. It is defined as the L 2 norm of the change of the differential coordinates. A key feature of this energy formulation is that the corresponding stiffness matrix is approximately constant, which enables fast and stable implicit integration and large deformations. Our algorithm can simulate various effects including solid, thin shell and plasticity. We also adopt two schemes to accelerate the simulation process: dimensionality reduction in frequency domain and adaptive rotation computation in spatial domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexa, M.: Differential coordinates for local mesh morphing and deformation. Visual Comput. 19(2), 105–114 (2003)

    MATH  Google Scholar 

  2. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pp. 43–54. ACM Press (1998)

  3. Barbič, J., James, D.L.: Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24(3), 982–990 (2005)

    Article  Google Scholar 

  4. Bro-Nielsen, M., Cotin, S.: Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum 15(3), 57–66 (1996)

    Article  Google Scholar 

  5. Capell, S., Green, S., Curless, B., Duchamp, T., Popovic, Z.: Interactive skeleton-driven dynamic deformations. In: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pp. 586–593. ACM Press (2002)

  6. Capell, S., Green, S., Curless, B., Duchamp, T., Popovic, Z.: A multiresolution framework for dynamic deformations. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 41–47. ACM Press (2002)

  7. Choi, K.J., Ko, H.S.: Stable but responsive cloth. In: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pp. 604–611. ACM Press (2002)

  8. Choi, M.G., Ko, H.S.: Modal warping: Real-time simulation of large rotational deformation and manipulation. IEEE Trans. Vis. Comput. Graph. 11(1), 91–101 (2005)

    Article  Google Scholar 

  9. Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Graph. 5(1), 62–73 (1999)

    Article  Google Scholar 

  10. Debunne, G., Desbrun, M., Cani, M.P., Barr, A.H.: Dynamic real-time deformations using space & time adaptive sampling. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 31–36. ACM Press (2001)

  11. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 317–324. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1999)

    Chapter  Google Scholar 

  12. Gibson, S.F.F., Mirtich, B.: A survey of deformable modeling in computer graphics. Tech. Rep. TR-97-19, Mitsubish Electric Research Lab., Cambridge (1997)

  13. Grinspun, E., Krysl, P., Schröder, P.: Charms: a simple framework for adaptive simulation. In: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pp. 281–290. ACM Press (2002)

  14. Hauser, K., Shen, C., O’Brien, J.F.: Interactive deformations using modal analysis with constraints. In: Proceedings of Graphics Interface 2003, pp. 247—256 (2003)

  15. Huang, J., Liu, X., Bao, H., Guo, B., Shum, H.Y.: Clustering method for fast deformation with constraints. In: Proceedings of the 2005 ACM symposium on Solid and physical modeling, pp. 221–226. ACM Press, New York, NY, USA (2005)

    Chapter  Google Scholar 

  16. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.Y., Teng, S., Bao, H., Guo, B., Shum, H.Y.: Subspace gradient domain mesh deformation. ACM Trans. Graph. 25(3) (2006)

  17. Huang, J., Zhang, H., Shi, X., Liu, X., Bao, H.: Interactive mesh deformation with pseudo material effects. Computer Animation and Virtual Worlds 17(3-4), 383–392 (2006)

    Google Scholar 

  18. James, D.L., Pai, D.K.: Artdefo: accurate real time deformable objects. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 65–72. ACM Press/Addison-Wesley Publishing Co. (1999)

  19. Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C., Seidel, H.P.: Differential coordinates for interactive mesh editing. In: Proceedings of Shape Modeling International, pp. 181–190 (2004)

  20. Metaxas, D., Terzopoulos, D.: Dynamic deformation of solid primitives with constraints. Comput. Graph. (Proc. SIGGRAPH’92) 26(2), 309–312 (1992)

    Article  Google Scholar 

  21. Miao, L., Huang, J., Liu, X., Bao, H., Guo, B.: Computing variation modes for point set surfaces. In: Eurographics Symposium on Point Based Graphics, pp. 63–69 (2005)

  22. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable real-time deformations. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 49–54. ACM Press (2002)

  23. Müller, M., Gross, M.H.: Interactive virtual materials. In: Graphics Interface, pp. 239–246 (2004)

  24. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005)

    Article  Google Scholar 

  25. Nealen, A., Müller, M., Keiser, R., Boserman, E., Carlson, M.: Physically based deformable models in computer graphics. In: Eurographics 2005 state of the art report (STAR) (2005)

  26. O’Brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical modeling and animation of ductile fracture. In: SIGGRAPH ’02: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pp. 291–294. ACM Press, New York, NY, USA (2002)

    Chapter  Google Scholar 

  27. Pentland, A., Williams, J.: Good vibrations: model dynamics for graphics and animation. In: Proceedings of the 16th annual conference on Computer graphics and interactive techniques, pp. 215–222. ACM Press (1989)

  28. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Proceedings of the Eurographics symposium on Geometry processing, pp. 179–188. Eurographics Association (2004)

  29. Terzopoulos, D., Witkin, A.: Physically based models with rigid and deformable components. IEEE Comput. Graph. Appl. 8(6), 41–51 (1988)

    Article  Google Scholar 

  30. Wu, X., Downes, M.S., Goktekin, T., Tendick, F.: Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshes. Comput. Graph. Forum 20(3), 349–358 (2001)

    Article  Google Scholar 

  31. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graph. 23(3), 644–651 (2004)

    Article  Google Scholar 

  32. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.Y.: Large mesh deformation using the volumetric graph laplacian. ACM Trans. Graph. 24(3), 496–503 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinguo Liu or Hujun Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Shi, X., Liu, X. et al. Geometrically based potential energy for simulating deformable objects . Visual Comput 22, 740–748 (2006). https://doi.org/10.1007/s00371-006-0058-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0058-7

Keywords

Navigation