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Real-Time Structured Texture Synthesis and Editing
Using Image - Mesh Analogies

Abstract We present a novel texture synthesis technique
designed to reproduce at real-time frame-rates example tex-
ture images, with a special focus on patterns characterized
by structural arrangements. Unlike current pixel-, patch- or
texton-based schemes, that operate in image-space, our ap-
proach is structural. We propose to assimilate texture im-
ages to corresponding 2D geometric meshes (called texture-
meshes). Our analysis mainly consists in generating auto-
matically these meshes, while synthesis is then based on the
creation of new vertex/polygon distributions matching some
arrangement map. The output texture-image is obtained by
rasterizing the previously generated polygons using graphics
hardware capabilities, which guarantees high speed perfor-
mance. By operating in geometry space instead of image /
pixel-space, the proposed structural approach has a major
advantage over current techniques: beyond pure texture re-
production, it permits us defining various tools, which al-
low users to further modify locally or globally and in real-
time structural components of textures. By controlling the
arrangement map, users can substitute new meshes in order
to completely modify the structural appearance of input tex-
tures, yet maintaining a certain visual resemblance with the
initial example image.

Keywords Texture · Synthesis · Editing

1 Introduction

Texture synthesis has proved to be a powerful tool for repro-
ducing automatically and faithfully example texture images,
and has thus been extensively studied during the past years.
It has now reached an advanced degree of maturity. Beyond
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reproduction, new techniques now furthermore attempt to
grant users more and more control over the synthesis pro-
cess. These methods essentially focus on the control of fea-
ture positions and size, or on techniques to create consis-
tent transitions among different textures (including texture
mixing). However, semantic-related structural texture com-
positions have not been paid much attention yet, though this
represents an important visual characteristic of many natural
or artificial textures.

In this paper, we propose a structural method designed
to address this issue. Our motivation is to allow users a fast,
faithful and automatic texture reproduction, but with an in-
teractive control of structural texture compositions: not only
shape and position of texture features / elements (called tex-
tons according to [11]), but also the way the textons are ar-
ranged with respect to each other. With our approach, users
may, for instance, modify the structural arrangement of an
input texture, while maintaining some visual resemblance
with the corresponding example image, such as exchang-
ing brick arrangements, but not the individual brick patterns.
The structural appearance is controlled using an arrange-
ment map, that can be extracted from images or freely de-
signed by users.

Figure 1 depicts an example showing that our method
covers well structural texture aspects. The top row shows on
the left the input texture and on the right the corresponding
texture-mesh extracted using image processing techniques.
The second row illustrates synthesis: on the left, we show
the used arrangement map and on the right the resulting
texture synthesis (the synthesis uses the input example, the
texture mesh and the arrangement map). Since on the sec-
ond row, the arrangement map matches the initial arrange-
ment of the example texture, we obtain a straight reproduc-
tion. The last row illustrates structural control: another ar-
rangement has been substituted using a different arrange-
ment map, thus modifying the structural composition of the
texture. Although the arrangement is different, we maintain
a certain visual resemblance with the original model.

To be able to provide efficient interaction tools, our syn-
thesis technique must satisfy a strong constrain: it must run
at interactive frame-rates. Our method guarantees such frame-
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rates by using graphics cards to accelerate the image genera-
tion process. More specifically, our technique consists in de-
composing textures into sets of connected polygons, which
are bounding individual textons. Once the textures have been
expressed as 2D texton matching meshes, colors can be ig-
nored. The synthesis operates entirely in geometric space: it
consists in reproducing visually similar meshes coarsen by
the supplied arrangement map. Once a new mesh has been
synthesized (requires a few milliseconds), the corresponding
texture image is finally generated in real-time by polygon
rasterization.

Fig. 1 Our synthesis is based on mesh extraction (top right) from input
images (top left), in combination with arrangement maps (left) to con-
trol structural arrangements of resulting textures (right). In both cases,
the textures were synthesized in a few milliseconds. Note how the sec-
ond texture keeps a certain visual resemblance with the example image,
though its structural arrangement is different.

The paper is organized as follows: next section briefly
presents some related works. Section 3 then explains the
pre-processing stage: the automatic generation of texture-
meshes. Section 4 presents the synthesis of meshes using an
arrangement map to control structural aspects. We propose a
polygon fitting technique. Section 5 describes how to recon-
struct texture images from the previously generated meshes.
Finally, before concluding, we present some results, as well
as a comparative study with existing synthesis techniques.
As will be shown, our method, though not focusing on qual-
ity, compares well to current methods, but at a fraction of
computational requirements. In addition, it considerably in-
creases user control concerning structural composition. We
further show that our technique not only applies to highly
structured textures like brick-walls but also to random pat-
terns such as lawns. The only condition that must be met, is
that individual textons can be well identified.

2 Related Works and Motivation

Seminal texture analysis and synthesis methods were mainly
based on histogram analogies using multi-scale or spectral

approaches [9,3]. But such methods are strongly limited by
the fact that they cannot deal with structured patterns. Alter-
nate techniques, based on markovian processes, have then
been proposed. Such techniques generate patterns pixel by
pixel, by selecting at each step a color that minimizes an
error according to a given neighborhood [6]. But the re-
lated “best pixel match search” may require some noticeable
time in spite of proposed hierarchical data structures [24]. In
addition, semantic-related structures are not well addresses
with these methods. Another solution therefore consists in
using complete texture pieces [17] instead. These can be ran-
domly repeated and blended as in [22]. The quality of patch-
based techniques depends on the types of overlap manage-
ment. Blending, for instance, introduces some new frequen-
cies (over-blurring), thus deteriorating visual aspects. Bet-
ter results are usually obtained using a clever “cutting tra-
jectory” along the overlap, computed according to an error-
minimizing factor [5,13]. Recent improvements in the field
of texture synthesis focus on recovering even better some
feature-related aspects [26] by using additionally Laplacian
filters. Other techniques focus on synthesis speed by sepa-
rating analysis (pre-computation step) and synthesis [28] or
by using the GPU [15].

Fast and faithful texture reproduction remained for a long
time a major goal of texture synthesis, but lots of more re-
cent computer graphics-oriented techniques, more and more
include besides “random” / uncontrolled high quality repro-
duction also the possibility for users to change and con-
strain some visual aspects. In [2,23] different textures can
be mixed. In [1] feature distributions can be controlled us-
ing a user-drawn feature probability map. In [4,29] feature
sizes, orientations and so forth can be modified. In [19,
30], the difficult problem of smooth transitions between dif-
ferent types of textures is addressed. As for texture parti-
cles [4], [30] considers elementary texture components (tex-
tons) by using texton masks. We therefore call such tech-
niques texton-based. With [30], users may also control other
feature properties like size and orientation (using an under-
lying vector-field). More recently, a complete system has
been proposed to design new textures from example texture
databases [20]. In [15], a GPU implementation is proposed
to produce controlled textures at very fast rates, which al-
lows one to drag-and-drop individual textons at real-time
rates. However, this technique uses a pixel-based approach
thus failing to capture structural aspects. In [12] an opti-
mization technique is used, which allows one to control the
synthesis by using underlying flow fields. All of these tech-
niques considerably increase the scope of texture synthesis,
especially for computer graphics applications. They provide
a wide range of tools, allowing users to design various ef-
fects beyond pure texture reproduction. However, none of
these techniques ever considered semantic-related structural
manipulations. Therefore, there remains an important lim-
itation with respect to user control and free texture design
from example images.
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The motivation of our technique is to fill this gap. Unlike
techniques operating in image-space, structural approaches
have not been much studied yet, because they are known to
be restrictive and / or technically more complex. In [14], for
instance, the proposed structural method has been limited
to specific types of textures such as brick wall patterns and
woods. Our technique instead performs a full texture-mesh
analogy, thus remaining generic. It is only based on the abil-
ity to segment and to identify textons in texture images. By
using an arrangement map, the user straightforwardly con-
trols the structural aspect of textures for synthesis.

2D meshes have been used before in the field of texture
synthesis, but to our knowledge not for structural analysis.
In [20], for instance, simplicial complexes are used to main-
tain sharpness along interpolations. In [18], meshes are used
to evaluate the distortions of near-regular textures. Here, we
extend this concept to characterize the actual structural com-
position of any type of texture, including irregular ones. In
our case, we do not start from rectangular grids, but use im-
age analysis to create 2D texture matching meshes. These
are then coarsen to fit an arrangement map.

Our approach mainly extends the texture particles and
texton masks approaches of respectively [4] and [30] by fur-
ther bounding individual textons with polygons. Since our
polygons may be considered to some extent as cells, our
approach comes also close to cellular texture synthesis ap-
proaches, which have already been used successfully long
before in the field of pure texture synthesis (that is, without
analysis), for example for generating brick-wall patterns [21,
16] or noise functions [25]. Here, we apply this kind of struc-
tural classification to the field of texture reproduction and
design from example image analysis.

3 Automatic Texture-mesh Generation

Our first objective is to generate automatically a 2D mesh
well matching the structural composition of the input tex-
ture. This mesh represents a kind of geometric dual coun-
terpart to the texture image. By viewing only the mesh, one
should be able to recover the global structural appearance
of the corresponding texture. This mesh will be later used,
in conjunction with the arrangement map, to produce con-
trolled structural arrangements.

Mesh reconstruction, for example by analyzing edges in
images, is a widely studied area in the field of computer vi-
sion and digital image processing [7], therefore, we do not
discuss all related topics in details here. Indeed, mesh ex-
traction does not represent our core problematic. It rather
represents a necessary pre-process.

We note that there exists a huge amount of work con-
cerning more generally the creation of triangular, structured,
unstructured, hexagonal, etc. meshes from image data (2D
or even 3D). We found however that existing methods do
not well adapt to the texture analysis and synthesis problem
at hand. Therefore, we nevertheless briefly present the ma-
jor aspects of the method we implemented for generating

automatically texture matching meshes. To avoid too much
details, we will assume that the reader is familiar with mor-
phological operators, such as erosion, dilatation, thinning,
and so forth.

As for texton-based techniques [4,30], the first step con-
sists of texture segmentation, which means that we need to
identify textons by creating a binary image Is(i, j) from the
input texture image I(i, j). In [30], such an image is called
texton-mask. Figure 2 illustrates our segmentation: (a) rep-
resents the input texture I(i, j) and (b) the segmented image
Is(i, j).

(b)

(g) (h)

(e) (f)

(d)(c)

(a)

Fig. 2 Texture segmentation and automatic mesh reconstruction using
basic image processing tools.

Gabor wavelets and windowed Fourrier transforms [8,
10] have had a wide success in the field of texture segmen-
tation because they unify frequency and spatial analysis and
have found to be well matching the human psycho-physical
perception mechanism. In our case, we apply such filters to
the input image, followed by a quantization.

In [30], the segmented images (texton masks) are straight-
forwardly used to control arrangements and to consistently
mix couples of textures. In our case, we propose to use this
mask to further build a texture-mesh (set of polygons). Such
a mesh can be automatically and straightforwardly derived
from Is(i, j) as described below. Figure 2 from (c) to (h) il-
lustrate the different steps of the procedure. Firstly, we apply
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a thinning algorithm to the negative of Is(i, j), which conse-
quently enlarges the textons, in such a way that these are sep-
arated by no more than one line of pixels (Figure 2.(c)). In-
deed, thinning is a well-known morphological operation that
reduces components in binary images to single pixel-wide
branches, while preserving some properties [7]: it does not
remove endpoints, it preserves connectedness, and it avoids
excessive erosion of regions. Since segmentation often in-
cludes some noise, the next step consist in ”cleaning” the im-
age resulting from thinning by removing pending branches
due for example to concave textons and by joining very close
endpoints. This is again done by iteratively applying specific
morphological erosion and dilatation operators. Figure 2.(d)
illustrates the result of our cleaning technique. Using this re-
sult, one can identify individual cells that are matching some
texton distributions. This image often (but not always) needs
again to be processed to remove some remaining small resid-
ual features. Removal is performed by filling out very small
cells, and by re-applying the same procedure. Figure 2.(e)
shows the obtained result: we obtain a set of texton-matching
cells defined by connected pixel-branches. Note that textons
on borders (that is, textons which are incomplete) have been
removed in our implementation (if necessary one could keep
them). All of this process can be quite easily implemented
and we found it to work very well. In fact, we experienced
that the main difficulty was not cell generation, but rather to
provide a good initial segmentation.

We call the image resulting from thinning and cleaning
Ic(i, j) because it identifies a set of texton-matching cells.
Using the previously computed image Ic(i, j), it is now pos-
sible to straightforwardly build a corresponding polygonal
mesh. We first pick out branching cross-points, which repre-
sent the primary vertices of the texture mesh. In figure 2.(f)
these are represented by green dots. We join these vertices
by straight edges according to the branches of image Ic(i, j).
That is, two vertices are joint only if the corresponding cross-
points are also linked together by one branch of pixels. Then,
we introduce some new vertices by splitting some edges ac-
cording to the shape of the corresponding branch. That is,
if the straight segment is too distant according to a user se-
lected threshold, we subdivide it to better fit the branch’s
curvature and shape. This is performed iteratively by intro-
ducing new vertices at positions that minimize the average
distance of the resulting new edges from the corresponding
branch. These new, secondary, vertices are depicted as yel-
low dots in figure 2.(g). They mainly appear on the borders
of the outermost polygons.

Finally, this mesh is again processed to make it better fit
the individual textons of Is(i, j). Indeed, some mesh edges
may cross over the textons, which then results in apparent
discontinuities during synthesis (see next sections). We there-
fore have to ensure that mesh edges do not cross over textons
or at least to minimize such crossings. We apply an iterative
procedure that progressively displaces vertices in order to
minimize the amount of edges that cross over textons. The fi-
nal resulting texture-mesh is shown on figure 2.(h). It is well
matching the texton distribution of the input texture image.

We note that resulting 2D-meshes are not regular, often also
non-conformal and may contain polygons that have an arbi-
trary number of vertices (not necessarily the same number
for each polygon).

4 Synthesis using Arrangement Maps

In the previous section, we described a technique to gener-
ate sets of connected polygons from given input texture im-
ages using segmentation and digital image processing. These
polygons bound individual textons, so we call them texton-
polygons. In this section, we show that meshes can be ran-
domly reproduced to fit a given arrangement map. Our core
problem is to be able to generate a new mesh that globally
”matches” (from a visual point of view) this arrangement
map, yet including some elements of the previously gener-
ated texture-mesh.

We propose a method taking into account two statistical
elements: positions and shapes of polygons. We do so by
applying consecutively two iterative procedures.

The first procedure creates a random arrangement map
from a given periodic input arrangement map (figure 3), ei-
ther extracted from example images or designed by users.
The arrangement map is, as for the texture-mesh, composed
of polygons. Each of these map polygons is composed of
vertices, which are conformal or not. A non-conformal ver-
tex is a vertex belonging to an edge of another polygon. Con-
formal vertices are exclusively edge extremities. The princi-
ple for producing random arrangement maps is straightfor-
ward: we first randomly displace vertices. Non-conformal
vertices are only displaced along the corresponding edge.
Then, we apply an iterative relaxation procedure, aiming at
minimizing angular errors to respect initial angles of the in-
put arrangement map. That is, vertices are again progres-
sively displaced in order to match initial edge angles. The
user can select the magnitude of randomness by providing
a given magnitude coefficient. To keep a perfectly repetitive
structure this coefficient may be set to zero.

Figure 3 (right) shows an input arrangement map (same
as for figure 1), and shows a random perturbation (middle).
Note that since all vertices, in this example, are non-conformal,
we displaced them only along the corresponding edges, which
explains that we keep a sort of stacked linear structure. The
last image illustrates the result of relaxation after 50 itera-
tions.

Fig. 3 Creating random arrangement maps from input arrangement
maps using an iterative procedure.

The second procedure (figure 4) consists in fitting the
texton-polygons into the previously generated arrangement
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map, which is followed by a second iterative procedure con-
sisting in relaxing the resulting mesh to more or less well
respect initial texton-polygon shapes (edge angles). We do
this in two steps. Firstly, we randomly select for each map-
polygon a given texton-polygon. The randomly selected tex-
ton-polygon vertices are placed onto the edges and vertices
of the map-polygon by following a clock-wise cycle and
by optimizing distance ratios with respect to the polygon
perimeters (ratios with respect to the global distance around
the outside of the polygons). Secondly, the resulting poly-
gon, which is now totally matching the map-polygon is re-
laxed by an iterative procedure to better fit texton-polygon
edge angles. We note that this procedure allows us to make
any texton-polygon fit any map-polygon. Even if the texton-
polygon contains less vertices than the map-polygon it is
possible to duplicate some vertices (considering there was
a null distance edge). Shapes can be also very different. This
is illustrated in figure 4. The top shows a texton-polygon
(extracted from figure 1). The two next rows then illustrate
the fitting procedure for two different map-polygons (on the
left): a rectangle and a triangle. The final result of fitting is
shown on the right after 10 relaxation steps.

Fig. 4 Texton polygon (top) fitting technique: on the two bottom rows,
the left shows a map-polygon, the middle the clock-wise vertex place-
ment and the right the final result after relaxation.

The same procedure is applied to all map-polygons of
the random arrangement map, thus obtaining a new arrange-
ment matching texture-mesh. We call this new final mesh the
synthesis-mesh. We now describe how the latter mesh can be
used to create final texture images.

5 Texture Image Rasterization

The synthesis-mesh resulting from the previously described
fitting technique could be, at first glance, straightforwardly
used to create texture images. Indeed, the mesh is composed
of polygons, which represent basic graphical primitives sup-
ported by all current graphics cards. Hence, one may di-
rectly associate to each polygon a 2D-texture map with tex-
ture coordinates that match the initial input texture image
I(i, j), thereby letting the final image straightforwardly be
generated by fragment rasterization. 2D texture mapping-
based mesh-manipulation tools are commonly and broadly
used in nearly all interactive painting and photo-editing sys-
tems (for example to do image morphing). However, such a

straightforward mesh rasterization approach does not apply
well to texture synthesis. Indeed, there are at least two un-
desirable visual effects resulting from 2D texture mapping:
1) there are visible seams on the borders of the polygons
since two adjacent polygons in the synthesis-mesh might not
have been adjacent in the original texture-mesh (thus result-
ing in discontinuities), and 2) patterns related to textons ap-
pear stretched or shrieked, which is due to resampling during
rasterization.

To avoid these two undesirable effects, we propose a
technique that still consists in using polygonal 2D-texture
mapping, as supported by graphics cards, but adapted to con-
sider both textons and sub-textures together. We now de-
scribe what we mean by sub-textures and how to define these.

To generate texture-meshes (section 3), we have used a
binary segmentation based on color quantization. However,
it is possible to segment any input texture into more than just
two zones (black / white). Therefore, after filtering by Gabor
wavelets or Fourrier masks, we select a quantization number
nq higher than just two. Such a quantization is equivalent
to performing a pixel classification: each pixel is assigned a
class by means of a number (an integer value between 1 and
nq).

We call Iq(i, j), the image resulting from filtering and
quantization. Iq(i, j) is composed of sets of connected pixel
components Cq

k (that is, each class k ∈ [1, nq] corresponds
to one or multiple connected pixel sets). Intuitively, these
components are clustering pixels that are belonging to pat-
terns, which have similar filter responses. In other words, it
represents a partitioning of I into visually similar zones, that
we call sub-textures according to [27]. Each texton may now
be composed of one or multiple sub-textures.

Figure 5 shows an example of quantization for the brick-
wall example of figure 1. As visible on this figure, individ-
ual textons may be composed of multiple sub-textures (each
color represents another sub-texture on this figure).

We can now generate large texture fields visually match-
ing given sub-textures. On figure 5, we show an example of
sub-texture field corresponding to the concrete between the
bricks. The arrows show some of the connected components
Cq

k that have been used to generate this sub-texture field (left
of figure 5). The sub-texture fields are synthesized in a pre-
process by using any existing texture synthesis technique.
We used a quilting-like approach. For applying the latter, we
straightforwardly use the input image I(i, j) cropped by the
corresponding connected component Cq

k .

Fig. 5 Identifying sub-textures (left) and generating corresponding
texture fields (right). Here the sub-texture corresponds to the concrete
between the bricks of the brick wall texture of figure 1).
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Once all fields have been generated (as for mesh gener-
ation, this needs to be done only once in a pre-process for a
given input texture I(i, j)), they can be used in combination
with Iq(i, j) and with the texton map Is(i, j) to avoid the
problems of seams and distortions appearing during rasteri-
zation.

The synthesis-mesh allows us to create texton distribu-
tions by using ”traditional” texture mapping. But, instead
of mapping straightforwardly the input image I(i, j) as for
usual painting systems we map the quantized image Iq(i, j),
further cropped by the texton-mask Is(i, j). Figure 6 illus-
trates the principles of our technique. The top shows tra-
ditional texture mapping on a brick texton cropped by its
texton-mask. On the top right, we further show the same
brick stretched horizontally, thus distorting underlying pat-
terns. The two buttom rows illustrate our technique for an
increasing amount of subtextures.

The quantized image Iq(i, j) (left part of figure 6) is used
for indexing the corresponding subtextures (it is used as in-
direction), see middle part of figure 6. That is, each polygon
is actually rasterized with three 2D texture maps: the tex-
ton mask Is(i, j) used to extract only the pixels belonging
to textons, the index mask Iq(i, j) and the corresponding
subtexture field. The texton mask and the index mask pro-
duce the shape of the texton (it is resampled according to
the shape of the polygon) and the subtexture field the ac-
tual colors (small scale patterns). The result is given on the
right part of figure 6. Note how global texton shapes can be
deformed, without deforming subtextures.

Fig. 6 Using multiple sub-textures (middle) for individual texture ele-
ments instead of traditionnal 2D texture mapping (top). We also show
the effect of deforming the polygon and subsequently its texton (in this
case, we stretched the brick horizontally).

Figure 7 illustrates a more complete example for the brick-
wall. On this figure, we show, on the top, traditional tex-
ture mapping resulting in visible seams, since we have made
polygons adjacent that where nor adjacent in the initial texture-
mesh. Below, we show the corresponding texton mask (left

part). And at right, we finally show the result obtained by
applying our technique combining texton distributions with
the corresponding sub-textures indexed by Iq(i, j). A single
rendering pass is necessary: firstly, we initialize the frame-
buffer by copying the subtexture field corresponding to the
background subtexture (in the case of the brick-wall, this is
the concrete subtexture of figure 5). Then, each polygon is
rasterized with its own index mask (a 2D texture map) used
to access the corresponding subtexture fields as shown for
one single brick in figure 6. For practical reasons all subtex-
ture fields are fetched into texture memory once in the form
of a 3D texture (the fields are simply stacked). The index
value of the index mask then matches the Z coordinate in
this 3D texture. In fact, using a 3D texture allows us to bind
all sub-textures at once in texture memory.

Fig. 7 Using texton masks and index masks to avoid seams: the top
shows traditional 2D-texture mapping with seams and subtexture dis-
tortions. The bottom shows our result.

The interesting point with this approach is that texture
distortions (according to the shape of the polygon) are only
applied to the index and texton-mask Iq(i, j) and Is(i, j) to
modify the shape of the texton accordingly, but not to the
sub-textures (see the stretched brick of figure 6). The rea-
son is that we use two different texture coordinates, e. g. one
for the masks and another for the subtexture. This allows us
preserving subtexture frequencies. Note that instead of us-
ing a specific pixel-shader program and 3D texture, it is also
possible to use the more simple multi-texturing functionality
for rasterizing the polygons. However, in this case, multiple
passes become necessary, especially if one texton is com-
posed of multiple sub-textures (we need one pass for each
subtexture).

We note that we generate sub-textures only if the size of
the corresponding connected component Cq

k is large enough
(we set a minimal size to 200 pixels). Indeed, we experi-
enced that, if we use too small components, this results in
very noisy subtexture fields, also producing final noisy re-
sults. When no subtexture field has been generated for a
given texton, the previous procedure then simply indexes the
original image I(i, j) as for traditional 2D-texture mapping
(yet, still using the texton-mask to avoid seams). Figure 6
(last row) illustrates this. On the left quantized image, one
can actually see at least 5 classes. Hence, there should be
also 5 subtextures. Yet, only 3 were computed as visible in
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the middle part of the figure. This is because the correspond-
ing connected components were found to be too small.

For smoothly varying or non-stationay texton contents,
the use of subtextures can cause incorrect results (we show
this in the results section). In such cases, one must use a
large number of classes, resulting in very small connected
components. This, in turn, causes traditional texture map-
ping to be implicitly used (we do not compute subtexture
fields if the components are smaller than a given number of
pixels), which might result in visible pattern distortions.

To generate the final texture image from the previously
generated synthesis-mesh, one simply has to rasterize each
polygon using the texture mapping procedure that we just
described. This is usually extremely fast (real-time) since
graphics cards now reach high rasterization performances.
Since the synthesis-mesh technique is also very fast (few it-
erations are usually sufficient) textures can be synthesized at
interactive frame-rates. Users may also interactively edit the
synthesis mesh by displacing vertices or by dragging some
specific textons on some specific map-polygons.

6 Results

In this section, we present some results obtained with the
previously described texture synthesis and editing technique.

Figure 9 illustrates an example of synthesis result. The
top row shows from left to right : the input, the resulting cells
and the corresponding mesh. The second row shows the ar-
rangement map and the resulting synthesized mesh as well
as the corresponding texton-mask. The last row is the result-
ing texture for a low (left) and high (right) amount of classes.
Using a high amount of classes causes connected compo-
nents to be very small, which results in nearly no computed
subtextures.

Figure 10 illustrates a comparative study. The left col-
umn represents the model, the middle shows existing tech-
niques (from top to bottom: texture quilting [5], the feature
matching synthesis technique of [26], the parallel technique
of [15] and the per-pixel jump map technique of [28]), the
right column shows our result. Our objective was to com-
pare both quality and speed. So, we took two good qual-
ity techniques and two high speed techniques. In our case,
the synthesis took respectively from top to bottom 16ms,
123ms, 78ms and 57ms on a laptop with Pentium M pro-
cessor 2.00 GHz and 1Gb RAM. The graphics hardware is a
NVidia Quadro FX Go 1400. These timings include both the
synthesis of the mesh and the rasterization. In all cases, the
pre-processing time (required only once for a given texture)
was below 5mn (this includes segmentation, texture-mesh
generation and subtexture field synthesis). The number of
computed subtexture fields was kept low (an average of 2
fields per texton, except for the second row where we used
about 5 fields per texton, which also explains the somewhat
increased noise). As demonstrated by this figure, our tech-
nique provides sufficiently good results at timings compa-
rable to both [15] and [28]. Note that since both of these

methods are based on per-pixel procedures they fail to cap-
ture well semantic-related structural aspects. Our method,
on the contrary, is design to address structural textures, so it
provides better results in these cases.

Figure 11 illustrates the effect of different arrangement
maps on two different textures. The first row shows the in-
put, the second one the reconstructed texture-meshes and the
third one reproduction. The last two rows illustrate the influ-
ence of arrangement maps (depicted on the left most part).
Note that arrangement maps can contain arbitrary polygons
that do not necessarily need to be connected. For the three
arrangements, the synthesis time for the lawn was between
16ms and 47ms, and for the panther texture between 14ms
and 45ms.

Figure 12 shows some more examples. The right column
shows the input, the second one reproduction and finally a
new user designed arrangement.

The major limitation of our method is illustrated in fig-
ure 8. This figure shows textures that cannot be segmented
into individual textons. In such cases, we cannot build texture-
meshes and so the method simply cannot be used.

Fig. 8 Texture examples that cannot be processed with our technique,
since textons cannot be segmented.

7 Conclusions and Future Work

We have presented a new structural approach for texture
synthesis and editing. The method is based on a texture-
mesh analogy, by associating to textures, sets of polygons
bounding individual textons. It is adapted to textures that are
characterized by strong structural components such as brick
walls, tiles or lawns with individual flowers. The approach
increases the manipulation possibilities while maintaining
a certain visual consistency with the original texture. The
technique furthermore processes textures at real-time rates
as it uses standard polygon rasterization. We have shown ex-
amples of synthesis that compare in quality with other recent
approaches.

Currently, the approach is not suitable for textures that
are not characterized by an underlying texton-related struc-
ture. In our future works, we aim at addressing this issue.
We believe that texture reproduction has now reached an ad-
vanced degree of maturity, and that efforts should be focused
on increasing user manipulations, including the design of
new structural aspects. We also intend to extend this method,
in order to be able to edit and manipulate textures at interac-
tive rates directly on arbitrary surfaces.
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Fig. 9 An example of synthesis for different amounts of subtextures.

Fig. 10 Comparison with texture quilting [5], the feature matching synthesis technique of [26], the parallel technique of [15] and the per-pixel
jump map technique of [28] (middle). Left is input, right is our result.
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Fig. 11 Controlling arrangements using the arrangement map (left most part).

Fig. 12 More examples of synthesis and controlled arrangements.
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