Skip to main content

Advertisement

Log in

Fair webs

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Fair webs are energy-minimizing curve networks. Obtained via an extension of cubic splines or splines in tension to networks of curves, they are efficiently computable and possess a variety of interesting applications. We present properties of fair webs and their discrete counterparts, i.e., fair polygon networks. Applications of fair curve and polygon networks include fair surface design and approximation under constraints such as obstacle avoidance or guaranteed error bounds, aesthetic remeshing, parameterization and texture mapping, and surface restoration in geometric models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Levy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22(3), 485–493 (2003)

    Article  Google Scholar 

  2. Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Recent advances in remeshing of surfaces. State-of-the-art report, AIM@SHAPE EU network (2005)

  3. Biermann, H., Martin, I.M., Zorin, D., Bernardini, F.: Sharp features on multiresolution subdivision surfaces. Graph. Models 64(2), 61–77 (2002)

    Article  MATH  Google Scholar 

  4. Blake, A., Isard, M.: Active Contours. Springer, Berlin Heidelberg New York (1998)

    Google Scholar 

  5. Bohl, H.: Kurven minimaler Energie auf getrimmten Flächen. Dissertation, Universität Stuttgart (1999)

  6. Botsch, M., Kobbelt, L.: An intuitive framework for real-time freeform modeling. ACM Trans. Graph. 23(3), 630–634 (2004)

    Article  Google Scholar 

  7. Botsch, M., Kobbelt, L.: A remeshing approach to multiresolution modeling. In: Proceedings of Symposium on Geometry Processing, pp. 189–196. Eurographics (2004)

  8. Brunnett, G., Hagen, H., Santarelli, P.: Variational design of curves and surfaces. Surveys Math. Ind. 3, 1–27 (1993)

    MATH  MathSciNet  Google Scholar 

  9. do Carmo, M.: Riemannian Geometry. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  10. do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, New York (1976)

    MATH  Google Scholar 

  11. Cheng, B.T., Burchard, P., Merriman, B., Osher, S.: Motion of curves constrained on surfaces using a level set approach. J. Comp. Phys. 175, 604–644 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Clarenz, U., Litke, N., Rumpf, M.: Axioms and variational problems in surface parameterization. Comput. Aided Geom. Des. 21, 727–749 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: N.A. Dodgson, M.S. Floater, M.A. Sabin (eds.) Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Berlin Heidelberg New York (2005)

    Chapter  Google Scholar 

  14. Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. ACM Trans. Graph. 23(3), 284–293 (2004)

    Article  Google Scholar 

  15. Hofer, M., Sapiro, G., Wallner, J.: Fair polyline networks for constrained smoothing of digital terrain elevation data. IEEE Trans. Geosc. Remote Sensing 44(10/2), 2983–2990 (2006)

    Article  Google Scholar 

  16. Kimmel, R.: Numerical Geometry of Images. Springer, Berlin Heidelberg New York (2003)

    MATH  Google Scholar 

  17. Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.P.: Interactive multiresolution modeling on arbitrary meshes. In: Proceedings of SIGGRAPH ’98, pp. 105–114. ACM, New York (1998)

    Chapter  Google Scholar 

  18. Kobbelt, L., Schröder, P.: A multiresolution framework for variational subdivision. ACM Trans. Graph. 17(4), 209–237 (1998)

    Article  Google Scholar 

  19. Kolb, A.: Optimierungsansätze bei der Interpolation verteilter Daten. Dissertation, Universität Erlangen (1995)

  20. Kolb, A., Seidel, H.P.: Interpolating scattered data with C2 surfaces. Comput. Aided Des. 27, 277–282 (1995)

    Article  MATH  Google Scholar 

  21. Lee, S.Y., Chwa, K.Y., Shin, S.Y., Wolberg, G.: Image metamorphosis using snakes and free-form deformations. In: Proceedings of SIGGRAPH ’95, pp. 439–448. ACM, New York (1995)

    Chapter  Google Scholar 

  22. Levin, A.: Interpolating nets of curves by smooth subdivision surfaces. In: Proceedings of SIGGRAPH ’99, pp. 57–64. ACM, New York (1999)

    Chapter  Google Scholar 

  23. Li, W.C., Levy, B., Paul, J.C.: Mesh editing with an embedded network of curves. In: Proceedings of International Conference on Shape Modeling (2005)

  24. Liu, Y., Lin, W.C., Hays, J.: Near-regular texture analysis and manipulation. ACM Trans. Graph. 23(3), 368–376 (2004)

    Article  Google Scholar 

  25. Memoli, F., Sapiro, G.: Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces. J. Comput. Phys. 173, 730–764 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Moreton, H., Sequin, C.: Functional optimization for fair surface design. In: Proceedings of SIGGRAPH ’92, pp. 167–176. ACM, New York (1992)

    Chapter  Google Scholar 

  27. Myles, A., Peters, J.: Threading splines through 3D channels. Comput. Aided Des. 37, 139–148 (2005)

    Article  Google Scholar 

  28. Nielson, G.: A method for interpolating scattered data based upon a minimum norm network. Math. Comp. 40, 253–271 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nielson, G., Franke, R.: A method for construction of surfaces under tension. Rocky Mountain J. Math. 14, 203–221 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nielson, G., Lee, K., Zhang, L.: Lifting curve parameterization methods to isosurfaces. Comput. Aided Geom. Des. 21, 751–766 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Noakes, L.: Null cubics and Lie quadratics. J. Math. Phys. 44, 1436–1448 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Polthier, K.: Polyhedral surfaces of constant mean curvature. Habilitationsschrift TU Berlin (2002)

  33. Pottmann, H., Hofer, M.: A variational approach to spline curves on surfaces. Comput. Aided Geom. Design 22(7), 693–709 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schaefer, S., Warren, J., Zorin, D.: Lofting curve networks using subdivision surfaces. In: Proceedings of Symposium on Geometry Processing, pp. 103–114. Eurographics (2004)

  35. Schneider, R., Kobbelt, L.: Geometric fairing of irregular meshes for freeform surface design. Comput. Aided Geom. Des. 18, 359–379 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Sequin, C.: CAD tools for aesthetic engineering. CAD Appl. 1, 301–309 (2004)

    Google Scholar 

  37. Singh, K., Fiume, E.: Wires: a geometric deformation technique. In: Proceedings of SIGGRAPH ’98, pp. 405–414. ACM, New York (1998)

    Chapter  Google Scholar 

  38. Surazhsky, V., Alliez, P., Gotsman, C.: Isotropic remeshing of surfaces: a local parameterization approach. In: Proceedings of 12th International Meshing Roundtable (2003)

  39. Tarini, M., Hormann, K., Cignoni, P., Montani, C.: Polycube-maps. ACM Trans. Graph. 23(3), 853–860 (2004)

    Article  Google Scholar 

  40. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of SIGGRAPH ’95, pp. 351–358. ACM, New York (1995)

    Chapter  Google Scholar 

  41. Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia, PA (1990)

    MATH  Google Scholar 

  42. Welch, W., Witkin, A.: Variational surface modeling. In: Proceedings of SIGGRAPH ’92, pp. 157–166. ACM, New York (1992)

    Chapter  Google Scholar 

  43. Xu, G.: Discrete Laplace–Beltrami operators and their convergence. Comput. Aided Geom. Des. 21, 767–784 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Wallner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallner, J., Pottmann, H. & Hofer, M. Fair webs. Visual Comput 23, 83–94 (2007). https://doi.org/10.1007/s00371-006-0088-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0088-1

Keywords

Navigation