Skip to main content
Log in

Description and visualization of graminaceous plants with an organ-based 3D architectural model, exemplified for spring barley (Hordeum vulgare L.)

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Within the framework of functional-structural plant models (FSPMs) this paper presents a structural (architectural) plant model that describes the morphology of spring barley (Hordeum vulgare L.) plants. A set of equations is introduced and implemented in self-written Matlab® computer programs to calculate the surface shape of vegetative and generative plant organs. Organ surfaces are approximated as geometrical primitives, visualized as triangulated surface meshes. The output of the model is a set of triangles that can be associated with geometrical (e.g. area), topological (e.g. main stem) and physiological (e.g. chlorophyll content) attributes, depending on the measurement techniques applied. This information is a prerequisite for functional (process) models to compute, e.g., the radiation field or gas exchange of the respective canopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloomenthal, J.: Calculation of reference frames along a space curve. In: Glassner, A. (ed.) Graphic Gems, pp. 567–571. Academic Press, Boston (1990)

  2. Blum, A.: Photosynthesis and transpiration in leaves and ears of wheat and barley varieties. J. Exp. Bot. 36(164), 432–440 (1985)

    Article  MathSciNet  Google Scholar 

  3. Bonhomme, R., Varlet-Grancher, C.: Estimation of gramineous crop geometry by plant profiles including leaf width variations. Photosynthetica 12(2), 193–196 (1978)

    Google Scholar 

  4. Bort, J., Febrero, A., Amaro, T., Araus, J.L.: Role of awns in ear water-use efficiency and grain weight in barley. Agronomie 14(2), 133–139 (1994)

    Google Scholar 

  5. Buck-Sorlin, G.H., Bachmann, K.: Simulating the morphology of barley spike phenotypes using genotype information. Agronomie 20(6), 691–702 (2000)

    Article  Google Scholar 

  6. Chelle, M., Andrieu, B.: The nested radiosity model for the distribution of light within plant canopies. Ecol. Model. 111(1), 75–91 (1998)

    Article  Google Scholar 

  7. de Reffye, P., Edelin, C., Françon, J., Jaeger, M., Puech, C.: Plant models faithful to botanical structure and development. ACM SIGGRAPH Comput. Graph. 22(4), 151–158 (1988)

    Article  Google Scholar 

  8. de Reffye, P., Houllier, F.: Modelling plant growth and architecture: some recent advances and applications to agronomy and forestry. Curr. Sci. 73(11), 984–992 (1997)

    Google Scholar 

  9. Dornbusch, T., Wernecke, P., Diepenbrock, W.: A method to extract morphological traits of plant organs from 3D point clouds as a data base for an architectural plant model. Ecol. Model. 200(1–2), 119–129 (2007)

    Article  Google Scholar 

  10. Drouet, J.L.: MODICA and MODANCA: modelling the three-dimensional shoot structure of graminaceous crops from two methods of plant description. Field Crops. Res. 83(2), 215–222 (2003)

    Article  Google Scholar 

  11. Elings, A., Rossing, W.A.H., van der Werf, W.: Virtual lesion extension: a measure to quantify the effects of bacterial blight on rice leaf CO2 exchange. Phytopathology 89(9), 789–795 (1999)

    Article  Google Scholar 

  12. España, M., Baret, F., Chelle, M., Aries, F., Andrieu, B.: A dynamic model of maize 3D architecture: application to the parameterisation of the clumpiness of the canopy. Agronomie 18(10), 609–626 (1998)

    Google Scholar 

  13. Evers, J.B., Vos, J., Fournier, C., Andrieu, B., Chelle, M., Struik, P.C.: Towards a generic architectural model of tillering in Gramineae, as exemplified by spring wheat (Triticum aestivum). New Phytol. 166(3), 801–812 (2005)

    Article  Google Scholar 

  14. Evers, J.B., Vos, J., Fournier, C., Andrieu, B., Chelle, M., Struik, P.C.: An architectural model of spring wheat: evaluation of the effects of population density and shading on model parameterization and performance. Ecol. Model. 200(3–4), 308–320 (2007)

    Article  Google Scholar 

  15. Gallagher, J.N.: Field studies of cereal leaf growth. I. Initiation and expansion in relation to temperature and ontogeny. J. Exp. Bot. 30(117), 625–636 (1979)

    Google Scholar 

  16. Godin, C., Guédon, Y., Costes, E., Caraglio, Y.: Measuring and analyzing plants with the AMAPmod software. In: Plants to Ecosystems – Advances in Computational Life Sciences, 2nd International Symposium on Computer Challenges in Life Science, pp. 63–94. CSIRO, Australia (1997)

  17. Godin, C., Sinoquet, H.: Functional-structural plant modelling. New Phytol. 166(3), 705–708 (2005)

    Article  Google Scholar 

  18. Hanan, J.: Virtual plants – integrating architectural and physiological models. Environ. Modell. Softw. 12(1), 35–42 (1997)

    Article  Google Scholar 

  19. Harlan, H.V., Anthony, S.: Development of barley kernels in normal and clipped spikes, and the limitations of awnless and hooded varieties. J. Agr. Res. 19(9), 431–472 (1920)

    Google Scholar 

  20. Klepper, B., Rickman, R.W., Peterson, C.M.: Quantitative characterization of vegetative development in small cereal grains. Agron. J. 74(5), 789–792 (1982)

    Article  Google Scholar 

  21. Lang, A.R.G.: Leaf orientation of a cotton plant. Agr. Meteorol. 11(1), 37–51 (1973)

    Article  Google Scholar 

  22. Lewis, P.: Three-dimensional plant modelling for remote sensing simulation studies using the botanical plant modelling system. Agronomie 19(3–4), 185–210 (1999)

    Google Scholar 

  23. Lintermann, B., Deussen, O.: Interactive modeling of plants. IEEE Comput. Graph. Appl. 19(1), 56–65 (1999)

    Article  Google Scholar 

  24. Marshall, B., Sedgley, R.H., Biscoe, P.V.: Effects of a water stress on the photosynthesis and respiration of wheat ears. Australian J. Agr. Res. 31(5), 857–871 (1980)

    Google Scholar 

  25. McClelland, C.K.: On the regularity of blooming in the cotton plant. Science 44(1138), 578–581 (1916)

    Article  Google Scholar 

  26. McMaster, G.S.: Phytomers, phyllochrons, phenology and temperate cereal development. J. Agr. Sci. 143(2–3), 137–150 (2005)

    Article  Google Scholar 

  27. Meier, U.: Growth Stages of Mono- and Dicotyledonous Plants. Blackwell Wissenschafts-Verlag, Berlin (1997)

    Google Scholar 

  28. Moore, K.J., Moser, L.E.: Quantifying developmental morphology of perennial grasses. Crop Sci. 35(1), 37–43 (1995)

    Article  Google Scholar 

  29. Moulia, B., Sinoquet, H.: Three-dimensional digitizing systems for plant canopy geometrical structure: a review. In: Varlet-Grancher, C., Bonhomme, R., Sinoquet, H. (eds.) Crop Structure and Light Microclimate: Characterization and Applications, pp. 183–193. INRA Editions, Paris (1993)

  30. Niklas, K.J.: The role of phyllotactic pattern as a developmental constraint on the interception of light by leaf surfaces. Evolution 42(1), 1–16 (1988)

    Article  Google Scholar 

  31. Niklas, K.J.: Plant Biomechanics: An Engineering Approach to Plant Form and Function. University of Chicago Press, Chicago (1992)

    Google Scholar 

  32. Pararajasingham, S., Hunt, L.A.: Effects of photoperiod on leaf appearance rate and leaf dimensions in winter and spring wheats. Can. J. Plant Sci. 76(1), 43–50 (1996)

    Google Scholar 

  33. Prévot, L., Aries, F., Monestiez, P.: A model of maize plant morphology. Agronomie 11(6), 491–503 (1991)

    Google Scholar 

  34. Prusinkiewicz, P.: A look at the visual modeling of plants using L-systems. Agronomie 19(3–4), 211–224 (1999)

    Google Scholar 

  35. Prusinkiewicz, P., Karwowski, R., Měch, R., Hanan, J.: L-studio/cpfg: a software system for modeling plants. In: Nagl, M., Schürr, A., Münch, M., eds., Applications of Graph Transformations with Industrial Relevance. Lect. Notes Comput. Sci., vol. 1779, pp. 457–464. Springer, Berlin (2000)

  36. Raab, F.H., Blood, E.B., Steiner, T.O., Jones, H.R.: Magnetic position and orientation tracking system. IEEE T. Aero. Elec. Sys. 15(5), 709–718 (1979)

    Article  Google Scholar 

  37. Ross, J.: The Radiation Regime and the Architecture of Plant Stands. Junk Publishers, The Hague (1981)

    Google Scholar 

  38. Ross, J.K., Marshak, A.L.: Calculation of canopy bidirectional reflectance using the Monte Carlo method. Remote Sens. Environ. 24(2), 213–225 (1988)

    Article  Google Scholar 

  39. Sanderson, J.B., Daynard, T.B., Tollenaar, M.: A mathematical model of the shape of corn leaves. Can. J. Plant Sci. 61, 1009–1011 (1981)

    Article  Google Scholar 

  40. Sinoquet, H., Moulia, B., Bonhomme, R.: Estimating the three-dimensional geometry of a maize crop as an input of radiation models: comparison between three-dimensional digitizing and plant profiles. Agr. Forest Meteorol. 55(3–4), 233–249 (1991)

    Article  Google Scholar 

  41. Sinoquet, H., Thanisawanyangkura, S., Mabrouk, H., Kasemsap, P.: Characterization of the light environment in canopies using 3D digitising and image processing. Ann. Bot. 82(2), 203–212 (1998)

    Article  Google Scholar 

  42. Skinner, R.H., Nelson, C.J.: Estimation of potential tiller production and site usage during tall fescue canopy development. Ann. Bot. 70(6), 493–499 (1992)

    Google Scholar 

  43. Smith, G.S., Curtis, J.P., Edwards, C.M.: A method for analyzing plant architecture as it relates to fruit quality using three-dimensional computer graphics. Ann. Bot. 70(3), 265–269 (1992)

    Google Scholar 

  44. Soler, C., Sillion, F.X., Blaise, F., de Reffye, P.: An efficient instantiation algorithm for simulating radiant energy transfer in plant models. ACM Trans. Graph. 22(2), 204–233 (2003)

    Article  Google Scholar 

  45. Stuppy, W.H., Maisano, J.A., Colbert, M.W., Rudall, P.J., Rowe, T.B.: Three-dimensional analysis of plant structure using high-resolution X-ray computed tomography. Trends Plant Sci. 8(1), 2–6 (2003)

    Article  Google Scholar 

  46. Takenaka, A., Inui, Y., Osawa, A.: Measurement of three-dimensional structure of plants with a simple device and estimation of light capture of individual leaves. Funct. Ecol. 12(1), 159–165 (1998)

    Article  Google Scholar 

  47. Tanaka, T., Yamaguchi, J., Takeda, Y.: Measurement of forest canopy structure with a laser plane range-finding method – development of a measurement system and applications to real forests. Agr. Forest Meteorol. 91(3–4), 149–160 (1998)

    Article  Google Scholar 

  48. Watanabe, T., Hanan, J.S., Room, P.M., Hasegawa, T., Nakagawa, H., Takahashi, W.: Rice morphogenesis and plant architecture: measurement, specification and the reconstruction of structural development by 3D architectural modelling. Ann. Bot. 95(7), 1131–1143 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tino Dornbusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dornbusch, T., Wernecke, P. & Diepenbrock, W. Description and visualization of graminaceous plants with an organ-based 3D architectural model, exemplified for spring barley (Hordeum vulgare L.). Visual Comput 23, 569–581 (2007). https://doi.org/10.1007/s00371-007-0119-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0119-6

Keywords

Navigation