Skip to main content
Log in

The progressive mesh compression based on meaningful segmentation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Nowadays, both mesh meaningful segmentation (also called shape decomposition) and progressive compression are fundamental important problems, and some compression algorithms have been developed with the help of patch-type segmentation. However, little attention has been paid to the effective combination of mesh compression and meaningful segmentation. In this paper, to accomplish both adaptive selective accessibility and a reasonable compression ratio, we break down the original mesh into meaningful parts and encode each part by an efficient compression algorithm. In our method, the segmentation of a model is obtained by a new feature-based decomposition algorithm, which makes use of the salient feature contours to parse the object. Moreover, the progressive compression is an improved degree-driven method, which adapts a multi-granularity quantization method in geometry encoding to obtain a higher compression ratio. We provide evidence that the proposed combination can be beneficial in many applications, such as view-dependent rendering and streaming of large meshes in a compressed form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alliez, P., Desbrun, M.: Progressive encoding for lossless transmission of triangle meshes. In: SIGGRAPH, Los Angeles, pp. 198–205 (2001)

  2. Alliez, P., Desbrun, M.: Valence-driven connectivity encoding of 3D meshes. In: EuroGraphics, CGF, Manchester, UK, pp. 480–489 (2001)

  3. Alliez, P., Gotsman, C.: Recent advances in compression of 3D meshes. In: Advances in Multiresolution for Geometric Modelling, pp. 3–26. Springer (2005)

  4. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., Tal, A.: Mesh segmentation – a comparative study. In: SMI, Japan, pp. 14–25. IEEE Press (2006)

  5. Deering, M.: Mesh compression. In: SIGGRAPH, pp. 13–20. ACM Press, Los Angeles, CA, USA (1995)

  6. Friedel, I., Schroder, P., Khodakovsky, A.: Variational normal meshes. ACM Trans. Graph. 23(4), 1061–1073 (2004)

    Article  Google Scholar 

  7. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. ACM Trans. Graph. 23(3), 652–663 (2004)

    Article  Google Scholar 

  8. Gandoin, P.-M., Devillers, O.: Progressive lossless compression of arbitrary simplicial complexes. In: SIGGRAPH, pp. 372–379. ACM Press (2002)

  9. Gu, X.F., Gortler, S.J., Hoppe, H.: Geometry images. In: SIGGRAPH, pp. 355–361. ACM Press (2002)

  10. Guskov, I., Vidimce, K., Sweldens, W., Schroeder, P.: Normal meshes. In: SIGGRAPH, pp. 95–102. ACM Press, New Orleans (2000)

  11. Hoffman, D.D., Richards, W.A.: Parts of recognition. Cognition 18, 65–96 (1984)

    Article  Google Scholar 

  12. Hoppe, H.: Progressive meshes. In: SIGGRAPH, pp. 99–108. ACM Press, New Orleans (1996)

  13. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., Shum, H.-Y.: Subspace gradient domain mesh deformation. ACM Trans. Graph. 25(3), 1126–1134 (2006)

    Article  Google Scholar 

  14. Kalaiah, A., Varshney, A.: Statistical geometry representation for efficient transmission and rendering. ACM Trans. Graph. 24(2), 348–373 (2005)

    Article  Google Scholar 

  15. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: SIGGRAPH, pp. 279–286. ACM Press/Addison-Wesley (2000)

    Google Scholar 

  16. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22(3), 954–961 (2003)

    Article  Google Scholar 

  17. Khodakovsky, A., Schroder, P., Sweldens, W.: Progressive geometry compression. In: SIGGRAPH, pp. 271–278. ACM Press, New Orleans (2000)

  18. Kim, J., Choe, S., Lee, S.: Multiresolution random accessible mesh compression. Comput. Graph. Forum 25(3), 323–332 (2006)

    Article  Google Scholar 

  19. Koller, D., Turitzin, M., Tarini, M., Croccia, G., Cignoni, P., Scopigno, R.: Protected interactive 3D graphics via remote rendering. ACM Trans. Graph. 25(3), 695–703 (2004)

    Article  Google Scholar 

  20. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel H.-P.: Mesh scissoring with minima rule and part salience. Comput. Aided Geom. Design 22, 444–465 (2005)

    Article  MATH  Google Scholar 

  21. Li, X., Toon, T.W., Huang, Z.: Decomposing polygon meshes for interactive applications. In: SI3D, pp. 35–42. ACM Press (2001)

  22. Lien, J.M., Keyser, J., Amato, N.M.: Simultaneous shape decomposition and skeletonization. In: SPM ’06: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling, pp. 219–228. ACM Press (2006)

  23. Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner R.: Level of Detail for 3D Graphics. Morgan Kaufmann (2002)

  24. Mangan, A.P., Whitaker, R.T.: Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. Vis. Comput. Graph. 5(4), 308–321 (1999)

    Article  Google Scholar 

  25. Martin, I.B.: Adaptive graphics. IEEE Comput. Graph. Appl. 2(1), 6–10 (2003)

    Article  Google Scholar 

  26. Peng, J., Kim, C.-S., Kuo, C.-C.J.: Technologies for 3D mesh compression: A survey. J. Vis. Commun. Image Represent. 16(6), 688–733 (2005)

    Article  Google Scholar 

  27. Peng, J., Kuo, C.-C.J.: Geometry-guided progressive lossless 3D mesh coding with octree (OT) decomposition. ACM Trans. Graph. 24(3), 609–616 (2005)

    Article  Google Scholar 

  28. Peyre, G., Mallat, S.: Surface compression with geometric bandelets. ACM Trans. Graph. 24(3), 601–609 (2005)

    Article  Google Scholar 

  29. Rusinkiewicz, S.: Estimating curvatures and their derivatives on triangle meshes. In: Symposium on 3D Data Processing, Visualization, and Transmission, pp. 486–495. IEEE Press (2004)

  30. Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture mapping progressive meshes. In: SIGGRAPH, pp. 409–416. ACM Press (2001)

  31. Sander, P.V., Wood, Z.J., Gortler, S.J., Snyder, J., Hoppe, H.: Multi-chart geometry images. In: Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 146–155. ACM Press (2003)

  32. Shamir, A.: A formulation of boundary mesh segmentation. In: 3DPVT, pp. 82–89. IEEE Press (2004)

  33. Shatz, I., Tal, A., Leifman, G.: Paper craft models from meshes. Visual Comput. 22(9), 825–834 (2006)

    Article  Google Scholar 

  34. Sheng, Y., Kim, C.-S., Kuo, C.-C.J.: A progressive view-dependent technique for interactive 3-D mesh transmission. IEEE Trans. Circ. Sys. Video Technol. 14(11), 1249–1264 (2004)

    Article  Google Scholar 

  35. Yan, Z., Kumar, S., Kuo, C.-C.J.: Error resilient coding of 3-D graphic models via adaptive mesh segmentation. IEEE Trans. Circ. Sys. Video Technol. 11(7), 860–873 (2001)

    Article  Google Scholar 

  36. Yan, Z., Kumar, S., Kuo, C.-C.J.: Mesh segmentation schemes for error resilient coding of 3D graphic models. IEEE Trans. Circ. Sys. Video Technol. 15(1), 138–144 (2005)

    Article  Google Scholar 

  37. Yang, S., Kim, C.-S., Kuo, C.-C.J.: View-dependent progressive mesh coding based on partitioning. In: VCIP, pp. 268–279. IEEE Press (2002)

  38. Zelinka, S., Garl, M.: Surfacing by numbers. In: GI ’06: Proceedings of the 2006 Conference on Graphics Interface, pp. 107–113. Canadian Information Processing Society (2006)

  39. Zhang, E., Mischaikow, K., Turk, G.: Feature-based surface parameterization and texture mapping. ACM Trans. Graph. 24(1), 1–27 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Quan Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, ZQ., Liu, HF. & Jin, SY. The progressive mesh compression based on meaningful segmentation. Visual Comput 23, 651–660 (2007). https://doi.org/10.1007/s00371-007-0128-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0128-5

Keywords

Navigation