Skip to main content
Log in

Improved 2D mass-spring-damper model with unstructured triangular meshes

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we investigate both the visual realism and the physical accuracy of the 2D mass-spring-damper (MSD) model with general unstructured triangular meshes for the simulation of rigid cloth. For visual realism, the model should, at a minimum, bend smoothly under pure bending load conditions. For physical accuracy, it should bend approximately the same amount and shape as dictated by continuum mechanics. By matching the 2D MSD model with an elastic plate, we obtain a series of constraints on the parameters of the model. We find that for a 2D unstructured MSD model, it is necessary to apply preloads on the springs for accurate modeling of bending resistance. By simultaneously applying the constraints for both visual realism and physical accuracy, we can optimize the parameters of the model to enhance its fidelity. The simulation shows that the deformation of the optimized MSD model with preload is very close to the result obtained by the finite element method (FEM) under either point load condition or pressure load condition. With a much smaller computational burden compared with FEM, the optimized MSD model is especially suitable for real time haptic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of ACM SIGGRAPH, pp. 43–54. ACM Press, New York, NY, USA (1998)

    Google Scholar 

  2. Bhat, K.S., Twigg, C.D., Hodgins, J.K., Khosla, P.K., Popovic, Z., Seitz, S.M.: Estimation cloth simulation parameters from video. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 37–51. ACM Press, New York, NY, USA (2003)

    Google Scholar 

  3. Breen, D.E., House, D.H., Wozny, M.J.: Predicting the drape of woven cloth using interacting particles. In: Proceedings of ACM SIGGRAPH, pp. 365–372. ACM Press, New York, NY, USA (1994)

    Chapter  Google Scholar 

  4. Bridson, R., Marino, S., Fedkiw, R.: Simulation of clothing with folds and wrinkles. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 28–36. ACM Press, New York, NY, USA (2003)

    Google Scholar 

  5. Brown, J., Montgomery, K., Latombe, J.C., Stephanides, M.: A microsurgery simulation system. In: Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 137–144. Springer, London, UK (2001)

    Google Scholar 

  6. Carignan, M., Yang, Y., Magnenat-Thalmann, N., Thalmann, D.: Dressing animated synthetic actors with complex deformable clothes. Comput. Graph. (Proc. SIGGRAPH) 26(2), 99–104 (1992)

    Article  Google Scholar 

  7. Chen, Y., Lin, S., Zhong, H., Xu, Y.Q., Guo, B., Shum, H.Y.: Realistic rendering and animation of knitwear. IEEE Trans. Vis. Comput. Graph. 9(1), 43–55 (2003)

    Article  Google Scholar 

  8. Choi, K., Ko, H.: Stable but responsive cloth. ACM Trans. Graph. 21(3), 604–611 (2002)

    Article  Google Scholar 

  9. Devarajan, V., Wang, X., Shen, Y., Watson, M.J., Eberhart, R.C., Jones, C., Villegas, L.: A novel laparoscopic mesh placement part task trainer. Int. J. Med. Robotics Comput. Assisted Surg. 2(4), 312–320 (2006)

    Article  Google Scholar 

  10. Eberhardt, B., Weber, A., Strasser, W.: A fast, flexible particle-system model for cloth draping. IEEE Comput. Graph. Appl. 16(5), 52–59 (1996)

    Article  Google Scholar 

  11. Etzmuss, O., Gross, J., Strasser, W.: Deriving a particle system from continuum mechanics for the animation of deformable objects. IEEE Trans. Vis. Comput. Graph. 9(4), 538–550 (2003)

    Article  Google Scholar 

  12. Fenner, R.T.: Mechanics of Solids. CRC Press, Boca Raton, FL, USA (1993)

    Google Scholar 

  13. Gelder, A.V.: Approximate simulation of elastic membranes by triangulated spring meshes. J. Graph. Tools 3(2), 21–42 (1998)

    Google Scholar 

  14. Grinspun, E., Hirani, A.N., Desbrun, M., Schroder, P.: Discrete shells. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 62–67. ACM Press, New York, NY, USA (2003)

    Google Scholar 

  15. Jojic, N., Huang, T.S.: Estimating cloth draping parameters from range data. In: International Workshop on synthetic-Natural Hybrid Coding and 3D Imaging, pp. 73–76. Rhodes, Greece (1997)

  16. Lee, Y., Terzopoulos, D., Waltes, K.: Realistic modeling for facial animation. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 55–62. ACM Press, New York, NY, USA (1995)

    Chapter  Google Scholar 

  17. Maciel, A., Boulic, R., Thalmann, D.: Deformable tissue parameterized by properties of real biological tissue. In: Proceedings of International Symposium on Surgery Simulation and Soft Tissue Modeling, pp. 74–87. Springer, Berlin Heidelberg (2003)

    Chapter  Google Scholar 

  18. Miller, G.S.P.: The motion dynamics of snakes and worms. Comput. Graph. 22(4), 169–177 (1988)

    Article  Google Scholar 

  19. Panc, V.: Theories of Elastic Plates. Noordhoff International Publishing, Leyden (1975)

    MATH  Google Scholar 

  20. Platt, S., Badler, N.: Animating facial expressions. Comput. Graph. 15(3), 245–252 (1981)

    Article  Google Scholar 

  21. Provot, X.: Deformation constraints in a mass-spring model to describe rigid cloth behavior. In: Proceedings of Graphics Interface 1995, pp. 147–154. Morgan Kaufmann, Burlington, MA, USA (1995)

    Google Scholar 

  22. Raghupathi, L., Grisoni, L., Faure, F., Marchal, D., Cani, M.P., Chaillou, C.: An Intestinal Surgery Simulator: Real-Time collision processing and visualization. IEEE Trans. Vis. Comput. Graph. 10(6), 708–717 (2004)

    Article  Google Scholar 

  23. Solecki, R., Conant, R.J.: Advanced Mechanics of Materials. Oxford University Press, New York, NY, USA (2003)

    Google Scholar 

  24. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Comput. Graph. 21(4), 205–214 (1987)

    Article  Google Scholar 

  25. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Heating and melting deoformable models (from goop to glop). In: Graphics Interface’89, pp. 219–226. AK Peters, Wellesley, MA, USA (1989)

    Google Scholar 

  26. Terzopoulos, D., Waters, K.: Physically-based facial modeling, analysis and animation. J. Vis. Comput. Anim. 1, 73–80 (1990)

    Google Scholar 

  27. Tu, X., Terzopoulos, D.: Artifical fishes: physics, locomotion, perception, behavior. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–50. ACM Press, New York, NY, USA (1994)

    Chapter  Google Scholar 

  28. Vassilev, T., Spanlang, B., Chrysanthou, Y.: Fast cloth animation on walking avatars. Comput. Graph. Forum (Proceedings of Eurographics’01), 20(3), 260–267 (2001)

    Article  Google Scholar 

  29. Volino, P., Courchesne, M., Magnenat-Thalmann, N.: Versatile and efficient techniques for simulating cloth and other deformable objects. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 137–144. ACM Press, New York, NY, USA (1995)

    Chapter  Google Scholar 

  30. Volino, P., Magnenat-Thalmann, N.: Accurate garment prototyping and simulation. Comput. Aided Des. Appl. 2(5), 645–654 (2005)

    Google Scholar 

  31. Wang, X., Devarajan, V.: 2D mass-spring system parameter optimization based on axisymmetric bending for rigid cloth simulation. In: ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, pp. 317–324. ACM Press, Singapore (2004)

    Google Scholar 

  32. Wang, X., Devarajan, V.: 1D and 2D structured mass-spring model with preload. Visual Comput. 21(7), 429–448 (2005)

    Article  Google Scholar 

  33. Wang, X., Shen, Y., Devarajan, V.: Physically accurate mesh simulation in a laparoscopic hernia surgery simulator. In: Proc. Medicine Meets Virtual Reality (MMVR), pp. 568–573. IOS Press, Fairfax, VA, USA (2006)

    Google Scholar 

  34. Zhang, Y., Prakash, E.C., Sung, E.: A new physical model with multilayer architecture for facial expression animation using dynamic adaptive mesh. IEEE Trans. Vis. Comput. Graph. 10(3), 339–352 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuzhong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Devarajan, V. Improved 2D mass-spring-damper model with unstructured triangular meshes. Visual Comput 24, 57–75 (2008). https://doi.org/10.1007/s00371-007-0179-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0179-7

Keywords

Navigation