Skip to main content
Log in

Splitting cubes: a fast and robust technique for virtual cutting

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents the splitting cubes, a fast and robust technique for performing interactive virtual cutting on deformable objects.

The technique relies on two ideas. The first one is to embed the deformable object in a regular grid, to apply the deformation function to the grid nodes and to interpolate the deformation inside each cell from its 8 nodes. The second idea is to produce a tessellation for the boundary of the object on the base of the intersections of such boundary with the edges of the grid. Please note that the boundary can be expressed in any way; for example it can be a triangle mesh, an implicit or a parametric surface. The only requirement is that the intersection between the boundary and the grid edges can be computed. This paper shows how the interpolation of the deformation inside the cells can be used to produce discontinuities in the deformation function, and the intersections of the cut surface can be used to visually show the cuts on the object.

The splitting cubes is essentially a tessellation algorithm for growing, deformable surface, and it can be applied to any method for animating deformable objects. In this paper the case of the mesh-free methods (MMs) is considered: in this context, we described a practical GPU friendly method, that we named the extended visibility criterion, to introduce discontinuities of the deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belytschko, T., Krongauz, Y., Fleming, M., Organ, D., Liu, W.: Smoothing and accelerated computations in the element free galerkin method. J. Comput. Appl. Math. 74(1–2), 111–126 (1996). doi:10.1016/0377-0427(96)00020-9

    Article  MATH  MathSciNet  Google Scholar 

  2. Belytschko, T., Lu, Y., Gu, L.: Element-free galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bielser, D., Gross, M.: Interactive simulation of surgical cuts. In: Proceedings of the Pacific Graphics, pp. 116–125. IEEE, Los Alamitos (2000)

    Google Scholar 

  4. Bielser, D., Maiwald, V., Gross, M.: Interactive cuts through 3-dimensional soft tissue. Comput. Graph. Forum (Eurographics’99 Proc.) 18(3), C31–C38 (1999)

    Article  Google Scholar 

  5. Bruyns, C., Senger, S.: Interactive cutting of 3D surface meshes. Comput. Graph. 25(4), 635–642 (2001). http://dx.doi.org/10.1016/S0097-8493(01)00092-9

    Article  Google Scholar 

  6. Cotin, H.D.S., Ayache, N.: A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. In: CAS99 Proceedings, pp. 70–81. Milan, Italy (1999)

  7. Ganovelli, F., Cignoni, P., Montani, C., Scopigno, R.: A multiresolution model for soft objects supporting interactive cuts and lacerations. Comput. Graph. Forum 19(3), 271–282 (2000). citeseer.nj.nec.com/ganovelli00multiresolution.html

    Article  Google Scholar 

  8. Ganovelli, F., O’Sullivan, C.: Animating cuts with on-the-fly re-meshing. EuroGraphics Short Presentations, 2001, Roberts, J.C., ed. (2001). citeseer.nj.nec.com/ganovelli01animating.html

  9. Garland, M.: Quadric-based polygonal surface simplification. Ph.D. thesis. Carnegie Mellon University, Computer Science Department (1999)

  10. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. In: Siggraph 2002, Computer Graphics Proceedings, pp. 339–346. ACM Press/ACM SIGGRAPH/Addison Wesley Longman, San Antonio, TX (2002). citeseer.ist.psu.edu/ju02dual.html

    Google Scholar 

  11. Kobbelt, L., Botsch, M., Schwanecke, U., Seidel, H.: Feature-sensitive surface extraction from volume data. In: Fiume, E. (ed.) SIGGRAPH 2001, Computer Graphics Proceedings, pp. 57–66. ACM Press/ACM SIGGRAPH, Los Angeles, CA (2001)

    Google Scholar 

  12. Li, S., Liu, W.: Meshfree particle methods. In: International Conference on Computer Vision, pp. 288–296. Springer, Nice, France (2004)

    Google Scholar 

  13. Lim, Y.J., De, S.: On the use of meshfree methods and a geometry based surgical cutting in multimodal medical simulations. In: HAPTICS, pp. 295–301. IEEE Computer Society, Chicago (2004). http://csdl.computer.org/comp/proceedings/haptics/2004/2112/00/21120295abs.htm

    Google Scholar 

  14. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: ACM Computer Graphics (SIGGRAPH 87 Proceedings), vol. 21, pp. 163–170. Anaheim (1987)

  15. Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23(3), 385–392 (2004). http://doi.acm.org/10.1145/1015706.1015734

    Article  Google Scholar 

  16. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation. San Diego, CA (2004)

  17. Nienhuy, H.W.: Cutting in deformable objects. Tech. rep., PhD Thesis, Utrecht University (2003)

  18. O’Brien, J., Bargteil, A.W., Hodgins, J.: Graphical modeling and animation of ductile fracture. In: Proceedings of SIGGRAPH, pp. 291–294. San Antonio, TX (2002)

  19. O’Brien, J.F., Hodgins, J.K.: Graphical modeling and animation of brittle fracture. In: SIGGRAPH, pp. 137–146. Los Angeles, CA (1999). http://doi.acm.org/10.1145/311535.311550

  20. Organ, D., Fleming, M., Terry, T., Belytschko, T.: Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. Mech. 18, 225–235 (1996)

    Article  MATH  Google Scholar 

  21. Pauly, M., Keiser, R., Adams, B., Dutr, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. ACM Trans. Graph. 24(3), 957–964 (2005). doi:10.1145/1073204.1073296

    Article  Google Scholar 

  22. Pauly, M., Keiser, R., Kobbelt, L.P., Gross, M.: Shape modeling with point-sampled geometry. ACM Trans. Graph. 22(3), 641–650 (2003). doi:10.1145/882262.882319

    Article  Google Scholar 

  23. Sifakis, E., Der, K.G., Fedkiw, R.: Arbitrary cutting of deformable tetrahedralized objects. In: Gleicher, M., Thalmann, D. (eds.) Symposium on Computer Animation, Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2007, San Diego, California, USA, August 2–4, 2007), pp. 73–80. Eurographics Association (2007)

  24. Steinemann, D., Harders, M., Gross, M., Szekely, G.: Hybrid cutting of deformable solids. In: IEEE VR 2006. IEEE, Alexandria, Virginia (2006)

    Google Scholar 

  25. Steinemann, D., Otaduy, M., Gross, M.: Fast arbitrary splitting of deforming objects. In: Eurographics/SIGGRAPH Symposium on Computer Animation. Vienna, Austria (2006)

  26. Tanaka, A., Hirota, K., Kaneko, T.: Virtual cutting with force feedback. In: VRAIS’98: Proceedings of the Virtual Reality Annual International Symposium, p. 71. IEEE Computer Society, Washington, DC, USA (1998)

  27. VisualComputingLab: Idolib: Interactive deformable objects library. Publicly available on web: http://idolib.sf.net (2005)

  28. Wyvill, G., McPheeters, C., Wyvill, B.: Data structures for soft objects. Visual Comput. 2(4), 227–234 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Pietroni.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietroni, N., Ganovelli, F., Cignoni, P. et al. Splitting cubes: a fast and robust technique for virtual cutting. Vis Comput 25, 227–239 (2009). https://doi.org/10.1007/s00371-008-0216-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0216-1

Keywords

Navigation