Skip to main content
Log in

Spectral mesh deformation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present a novel spectral method for mesh deformation based on manifold harmonics transform. The eigenfunctions of the Laplace–Beltrami operator give orthogonal bases for parameterizing the space of functions defined on the surfaces. The geometry and motion of the original irregular meshes can be compactly encoded using the low-frequency spectrum of the manifold harmonics. Using the spectral method, the size of the linear deformation system can be significantly reduced to achieve interactive computational speed for manipulating large triangle meshes. Our experimental results demonstrate that only a small spectrum is needed to achieve undistinguishable deformations for large triangle meshes. The spectral mesh deformation approach shows great performance improvement on computational speed over its spatial counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Au, O.K.C., Tai, C.L., Liu, L., Fu, H.: Dual laplacian editing for meshes. IEEE Trans. Vis. Comput. Graph. 12(3), 386–395 (2006)

    Article  Google Scholar 

  2. Boier-Martin, I., Ronfard, R., Bernardini, F.: Detail-preserving variational surface design with multiresolution constraints. In: Proceedings of the 2004 Shape Modeling International, pp. 119–128. IEEE Computer Society, Washington, DC (2004)

    Chapter  Google Scholar 

  3. Botsch, M., Kobbelt, L.: An intuitive framework for real-time freeform modeling. ACM Trans. Graph. 23(3), 630–634 (2004)

    Article  Google Scholar 

  4. Botsch, M., Pauly, M., Gross, M., Kobbelt, L.: PriMo: coupled prisms for intuitive surface modeling. In: Proceedings of the 4th Eurographics Symposium on Geometry processing, pp. 11–20. Eurographics Association, Aire-la-Ville, Switzerland (2006)

    Google Scholar 

  5. Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230 (2008)

    Article  Google Scholar 

  6. Botsch, M., Sumner, R., Pauly, M., Gross, M.: Deformation transfer for detail-preserving surface editing. In: Proceedings of 11th International Fall Workshop Vision, Modeling & Visualization, pp. 357–364. Akademische Verlagsgesellschaft Aka, Aachen (2006)

    Google Scholar 

  7. Guo, X., Li, X., Bao, Y., Gu, X., Qin, H.: Meshless thin-shell simulation based on global conformal parameterization. IEEE Trans. Vis. Comput. Graph. 12(3), 375–385 (2006)

    Article  Google Scholar 

  8. Guskov, I., Sweldens, W., Schröder, P.: Multiresolution signal processing for meshes. In: Proceedings of ACM SIGGRAPH 99, pp. 325–334. ACM Press/Addison-Wesley Publishing Co., New York, NY (1999)

    Chapter  Google Scholar 

  9. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.Y., Teng, S.H., Bao, H., Guo, B., Shum, H.Y.: Subspace gradient domain mesh deformation. ACM Trans. Graph. 25(3), 1126–1134 (2006)

    Article  Google Scholar 

  10. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of ACM SIGGRAPH 2000, pp. 279–286. ACM Press/Addison-Wesley Publishing Co., New York, NY (2000)

    Google Scholar 

  11. Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.P.: Interactive multi-resolution modeling on arbitrary meshes. In: Proceedings of ACM SIGGRAPH 98, pp. 105–114. ACM Press/Addison-Wesley Publishing Co., New York, NY (1998)

    Chapter  Google Scholar 

  12. Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24(3), 479–487 (2005)

    Article  Google Scholar 

  13. Marinov, M., Botsch, M., Kobbelt, L.: GPU-based multiresolution deformation using approximate normal field reconstruction. J. Graph. Tools 12(1), 27–46 (2007)

    Google Scholar 

  14. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2002)

    Google Scholar 

  15. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes – The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York, NY (2007)

    MATH  Google Scholar 

  16. Reuter, M., Wolter, F.E., Peinecke, N.: Laplace–Beltrami spectra as shape-DNA of surfaces and solids. Comput.-Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  17. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 175–184. ACM Press, New York, NY (2004)

    Chapter  Google Scholar 

  18. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. 23(3), 399–405 (2004)

    Article  Google Scholar 

  19. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of ACM SIGGRAPH 95, pp. 351–358. ACM Press/Addison-Wesley Publishing Co., New York, NY (1995)

    Chapter  Google Scholar 

  20. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Comput. Graph. (Proceedings of ACM SIGGRAPH 90) 21(4), 205–214 (1987)

    Article  Google Scholar 

  21. Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. Technical report, ALICE – INRIA Lorraine, Nancy, France (2007)

    Google Scholar 

  22. Welch, W., Witkin, A.: Variational surface modeling. Comput. Graph. (Proceedings of ACM SIGGRAPH 92) 26(2), 157–166 (1992)

    Article  Google Scholar 

  23. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graph. 23(3), 644–651 (2004)

    Article  Google Scholar 

  24. Zayer, R., Rössl, C., Karni, Z., Seidel, H.P.: Harmonic guidance for surface deformation. Comput. Graph. Forum 24(3), 601–609 (2005)

    Article  Google Scholar 

  25. Zhang, H., van Kaick, O., Dyer, R.: Spectral methods for mesh processing and analysis. In: Proceedings of Eurographics State-of-the-art Report, pp. 1–22. Eurographics Association, Prague (2007)

    Google Scholar 

  26. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.Y.: Large mesh deformation using the volumetric graph laplacian. ACM Trans. Graph. 24(3), 496–503 (2005)

    Article  Google Scholar 

  27. Zhou, K., Huang, X., Xu, W., Guo, B., Shum, H.Y.: Direct manipulation of subdivision surfaces on GPUs. ACM Trans. Graph. 26(3), 91 (2007)

    Article  Google Scholar 

  28. Zorin, D., Schröder, P., Sweldens, W.: Interactive multiresolution mesh editing. In: Proceedings of ACM SIGGRAPH 97, pp. 259–268. ACM Press/Addison-Wesley Publishing Co., New York, NY (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Rong.

Electronic Supplementary Material

Movie 1 17.5MB

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rong, G., Cao, Y. & Guo, X. Spectral mesh deformation. Visual Comput 24, 787–796 (2008). https://doi.org/10.1007/s00371-008-0260-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0260-x

Keywords

Navigation