Skip to main content
Log in

A reduced unconstrained system for the cloth dynamics solver

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Modern direct solvers have been more and more widely used by computer graphics community for solving sparse linear systems, such as those that arise in cloth simulation. However, external constraints usually prevent a direct method from being used for cloth simulation due to the singularity of the constrained system. This paper makes two major contributions towards the re-introduction of direct methods for cloth dynamics solvers. The first one is an approach which eliminates all the constrained variables from the system so that we obtain a reduced, nonsingular and unconstrained system. As alternatives to the well-known MPCG algorithm, not only the original, unmodified PCG method, but also any direct method can be used to solve the reduced system at a lower cost. Our second contribution is a novel direct-iterative scheme applied for the reduced system, which is basically the conjugate gradient method using a special preconditioner. Specifically, we use the stiff part of the coefficient matrix, which we call the matrix core, as the preconditioner for the PCG. The inverse of this preconditioner is computed by any eligible direct solver. The direct-iterative method has proved to be more efficient than both direct and iterative methods. Our experiments show a factor of two speedup over direct methods when stiff springs are used, even greater improvements over the MPCG iterative method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amestoy, P.R., Davis, T.A., Duff, I.S.: Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30(3), 381–388 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ascher, U.M., Boxerman, E.: On the modified conjugate gradient method in cloth simulation. Vis. Comput. 19(7–8), 526–531 (2003)

    Google Scholar 

  3. Ascher, U.M., Ruuth, S.J., Wetton, B.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baraff, D.: Linear-time dynamics using Lagrange multipliers. In: Proceedings of SIGGRAPH ’96, pp. 137–146 (1996)

  5. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of SIGGRAPH ’98, pp. 43–54 (1998)

  6. Barrett, R.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)

    Google Scholar 

  7. Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., Grinspun, E.: A quadratic bending model for inextensible surfaces. In: Eurographics Symposium on Geometry Processing, pp. 227–230 (2006)

  8. Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM Trans. Graph. (SIGGRAPH ’03) 22(3), 917–924 (2003)

    Article  Google Scholar 

  9. Boxerman, E., Ascher, U.: Decomposing cloth. In: Proceedings of SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2004), pp. 153–161 (2004)

  10. Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH ’02) 21(3), 594–603 (2002)

    Google Scholar 

  11. Bridson, R., Marino, S., Fedkiw, R.: Simulation of clothing with folds and wrinkles. In: Proceedings of SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2003), pp. 28–36 (2003). http://www.cs.ubc.ca/~rbridson/docs/cloth2003.pdf

  12. Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 8xx: Cholmod, supernodal sparse Cholesky factorization and update/downdate. Unpublished Technical Report TR-2006-005, University of Florida (2006). http://www.cise.ufl.edu/research/sparse/, see also accompanying software

  13. Choi, K.J., Ko, H.S.: Stable but responsive cloth. ACM Trans. Graph. (SIGGRAPH ’02) 21(3), 604–611 (2002)

    Google Scholar 

  14. Davis, T.A., Hager, W.W.: Modifying a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 20(3), 606–627 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Davis, T.A., Hager, W.W.: Multiple-rank modifications of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 22(4), 997–1013 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Davis, T.A., Hager, W.W.: Row modifications of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 26(3), 621–639 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Desbrun, M., Schröder, P., Barr, A.: Interactive animation of structured deformable objects. In: Proceedings of Graphics Interface ’99, pp. 1–8 (1999)

  18. Eberhardt, B., Etzmuß, O., Hauth, M.: Implicit–explicit schemes for fast animation with particle systems. In: Eurographics Workshop on Computer Animation and Simulation, vol. 11, pp. 137–151 (2000)

  19. English, E., Bridson, R.: Animating developable surfaces using nonconforming elements. ACM Trans. Graph. (SIGGRAPH ’08) 27(3), 1–5 (2008). http://doi.acm.org/10.1145/1360612.1360665

    Article  Google Scholar 

  20. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient simulation of inextensible cloth. ACM Trans. Graph. (SIGGRAPH ’07) 26(3) (2007)

  21. Golub, G.H., Loan, C.F.V.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  22. Gould, N.I., Scott, J.A.: A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations. ACM Trans. Math. Softw. 33(2) (2007)

  23. Hauth, M.: Visual simulation of deformable models. Ph.D. thesis, Department of Computer Science, University of Tubingen (2004)

  24. Hauth, M., Etzmuß, O., Straßer, W.: Analysis of numerical methods for the simulation of deformable models. Vis. Comput. 19(7–8), 581–600 (2003)

    Google Scholar 

  25. Heggernes, P., Eisenstatz, S.C., Kumfert, G., Pothen, A.: The computational complexity of the minimum degree algorithm. In: Proceedings of 14th Norwegian Computer Science Conference, NIK 2001, University of Troms, Norway, pp. 98–109 (2001)

  26. Hong, M., Choi, M.H., Jung, S., Welch, S., Trapp, J.: Effective constrained dynamic simulation using implicit constraint enforcement. In: International Conference on Robotics and Automation, pp. 4520–4525 (2005)

  27. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  28. Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms. ACM Trans. Graph. (SIGGRAPH ’03) 22(3), 908–916 (2003)

    Article  Google Scholar 

  29. Provot, X.: Deformation constraints in a mass-spring model to describe rigid cloth behavior. In: Graphics Interface ’95, pp. 147–154 (1995)

  30. Schenk, O., Gärtner, K.: On fast factorization pivoting methods for symmetric indefinite systems. Elec. Trans. Numer. Anal. 23, 158–179 (2006)

    MATH  Google Scholar 

  31. Shewchuk, J.: An introduction to the conjugate gradient method without the agonizing pain. Technical Report CMU-CS-TR-94-125, Carnegie Mellon University (1994). http://www.cs.cmu.edu/quake-papers/painless-conjugate-gradient.ps

  32. Tsiknis, D., Bridson, R.: Cloth animation through unbiased strain limiting and physics-aware subdivision. In: Proceedings of SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2006), poster session (2006)

  33. Volino, P., Magnenat Thalmann, N.: Comparing efficiency of integration methods for cloth simulation. In: Computer Graphics International ’01, pp. 265–272 (2001)

  34. Volino, P., Magnenat-Thalmann, N.: Resolving surface collisions through intersection contour minimization. ACM Trans. Graph. 25(3), 1154–1159 (2006). http://doi.acm.org/10.1145/1141911.1142007

    Article  Google Scholar 

  35. Ye, J.: Simulating inextensible cloth using impulses. Comput. Graph. Forum 27(7). Special issue for Pacific Graphics 2008

  36. Ye, J., Webber, R.E., Gargantini, I.: On the impulse method for cloth animation. In: International Conference on Computational Science (2). Lecture Notes in Computer Science, vol. 3515, pp. 331–334. Springer, Berlin (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntao Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, J., Webber, R.E. & Wang, Y. A reduced unconstrained system for the cloth dynamics solver. Vis Comput 25, 959–971 (2009). https://doi.org/10.1007/s00371-008-0307-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0307-z

Keywords

Navigation