Skip to main content

Advertisement

Log in

An interactive 3D medical visualization system based on a light field display

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a prototype medical data visualization system exploiting a light field display and custom direct volume rendering techniques to enhance understanding of massive volumetric data, such as CT, MRI, and PET scans. The system can be integrated with standard medical image archives and extends the capabilities of current radiology workstations by supporting real-time rendering of volumes of potentially unlimited size on light field displays generating dynamic observer-independent light fields. The system allows multiple untracked naked-eye users in a sufficiently large interaction area to coherently perceive rendered volumes as real objects, with stereo and motion parallax cues. In this way, an effective collaborative analysis of volumetric data can be achieved. Evaluation tests demonstrate the usefulness of the generated depth cues and the improved performance in understanding complex spatial structures with respect to standard techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agus, M., Gobbetti, E., Guitián, J.A.I., Marton, F., Pintore, G.: GPU accelerated direct volume rendering on an interactive light field display. Comput. Graph. Forum 27(2), 231–240 (2008)

    Article  Google Scholar 

  2. Balogh, T., Forgacs, T., Agocs, T., Balet, O., Bouvier, E., Bettio, F., Gobbetti, E., Zanetti, G.: A scalable hardware and software system for the holographic display of interactive graphics applications. In: Eurographics Short Papers Proceedings, pp. 109–112 (2005)

  3. Bettio, F., Gobbetti, E., Marton, F., Pintore, G.: Scalable rendering of massive triangle meshes on light field displays. Comput. Graph. 32(1), 55–64 (2008)

    Article  Google Scholar 

  4. Boucheny, C., Bonneau, G.P., Droulez, J., Thibault, G., Ploix, S.: A perceptive evaluation of volume rendering techniques. In: Proc. ACM APGV, pp. 83–90 (2007)

  5. Bruckner, S., Gröller, M.E.: Style transfer functions for illustrative volume rendering. Comput. Graph. Forum 26(3), 715–724 (2007)

    Article  Google Scholar 

  6. Cossairt, O., Napoli, J., Hill, S., Dorval, R., Favalora, G.: Occlusion-capable multiview volumetric three-dimensional display. Appl. Opt. 46(8), 1244–1250 (2007)

    Article  Google Scholar 

  7. Dodgson, N.A.: Analysis of the viewing zone of the Cambridge autostereoscopic display. Appl. Opt. Opt. Technol. Biomed. Opt. 35(10), 1705–1710 (1996)

    MathSciNet  Google Scholar 

  8. Dodgson, N.A., Moore, J.R., Lang, S.R., Martin, G., Canepa, P.: Time-sequential multi-projector autostereoscopic 3D display. J. Soc. Inf. Disp. 8(2), 169–176 (2000)

    Article  Google Scholar 

  9. Favalora, G., Dorval, R., Hall, D., Napoli, J.: Volumetric three-dimensional display system with rasterization hardware. In: Proc. SPIE, vol. 4297, pp. 227–235 (2001)

  10. Favalora, G.E.: Volumetric 3d displays and application infrastructure. Computer 38(8), 37–44 (2005)

    Article  Google Scholar 

  11. Gobbetti, E., Marton, F., Iglesias Guitián, J.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric data sets. Vis. Comput. 24(7–9), 797–806 (2008)

    Article  Google Scholar 

  12. Huebschman, M., Munjuluri, B., Garner, H.: Dynamic holographic 3-d image projection. Opt. Express 11, 437–445 (2003)

    Article  Google Scholar 

  13. Jones, A., McDowall, I., Yamada, H., Bolas, M.T., Debevec, P.E.: Rendering for an interactive 360 degree light field display. ACM Trans. Graph. 26(3), 40 (2007)

    Article  Google Scholar 

  14. Kersten, M., Stewart, J., Troje, N., Ellis, R.: Enhancing depth perception in translucent volumes. IEEE Trans. Vis. Comput. Graph. J. 12(6), 1117–1123 (2006)

    Article  Google Scholar 

  15. McKay, S., Mair, G., Mason, S., Revie, K.: Membrane-mirror based autostereoscopic display for teleoperation and telepresence applications. In: Proc. SPIE, vol. 3957, pp. 198–207 (2000)

  16. Mora, B., Ebert, D.S.: Instant volumetric understanding with order-independent volume rendering. Comput. Graph. Forum 23(3), 489–497 (2004)

    Article  Google Scholar 

  17. Napoli, J., Stutsman, S., Chu, J.C.H., Gong, X., Rivard, M.J., Cardarelli, G., Ryan, T.P., Favalora, G.E.: Radiation therapy planning using a volumetric 3-D display: PerspectaRAD, p. 680312. SPIE (2008)

  18. Raap, G.B., Koning, A.H., Scohy, T.V., ten Harkel, A.D.J., Meijboom, F.J., Kappetein, A.P., van der Spek, P.J., Bogers, A.J.: Virtual reality 3D echocardiography in the assessment of tricuspid valve function after surgical closure of ventricular septal defect. Cardiovasc. Ultrasound 5(8) (2007)

  19. Relke, I., Riemann, B.: Three-dimensional multiview large projection system. In: Proc. SPIE, vol. 5664 (2005)

  20. Roberts, J.W., Slattery, O.: Display characteristics and the impact on usability for stereo. In: Proc. SPIE, vol. 3957, p. 128 (2000)

  21. St.-Hillaire, P., Lucente, M., Sutter, J., Pappu, R., Sparrell, C.G., Benton, S.: Scaling up the MIT holographic video system. In: Proc. 5th SPIE Symposium on Display Holography, pp. 374–380 (1995)

  22. Stanley, M., Conway, P., Coomber, S., Jones, J., Scattergood, D., Slinger, C., Bannister, B., Brown, C., Crossland, W., Travis, A.: A novel electro-optic modulator system for the production of dynamic images from giga-pixel computer generated holograms. In: Proc. SPIE, vol. 3956, pp. 13–22 (2000)

  23. van Berkel, C., Parker, D., Franklin, A.: Multiview 3d-lcd. In: Proc. SPIE, vol. 2653, p. 32 (1996)

  24. Ware, C., Franck, G.: Evaluating stereo and motion cues for visualizing information nets in three dimensions. ACM Trans. Graph. 15(2), 121–140 (1996)

    Article  Google Scholar 

  25. Woodgate, G.J., Harrold, J., Jacobs, A.M.S., Moseley, R.R., Ezra, D.: Flat-panel autostereoscopic displays: characterisation and enhancement. In: Proc. SPIE, vol. 3957, p. 153 (2000)

  26. Yang, R., Huang, X., Li, S., Jaynes, C.: Toward the light field display: Autostereoscopic rendering via a cluster of projectors. IEEE Trans. Vis. Comput. Graph. 14(1), 84–96 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Gobbetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agus, M., Bettio, F., Giachetti, A. et al. An interactive 3D medical visualization system based on a light field display. Vis Comput 25, 883–893 (2009). https://doi.org/10.1007/s00371-009-0311-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0311-y

Keywords

Navigation