Skip to main content
Log in

Simulation of swirling bubbly water using bubble particles

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The effect of surface tension is dynamically and realistically represented within a multiphase fluid simulation. Air bubbles are seeded with ‘bubble particles’ which move randomly. These molecule-like movements modify the surface of the air bubbles and generate turbulence in the water. The surface tension between air bubble and water, determined by the composition of the water, remains constant regardless of the size of the bubble, while external forces cause unstable fluid motion as the surface tension strives to remain constant, bubbles split and merge. The bubble particles can also compute for the numerical dissipation usually experienced in grid-based fluid simulations, by restoring the lost volume of individual bubbles. The realistic tearing of bubble surfaces is shown in a range of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cleary, P.W., Pyo, S.H., Prakash, M., Koo, B.K.: Bubbling and frothing liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 26(3), 971–976 (2007)

    Google Scholar 

  2. Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21(3), 736–744 (2002)

    Google Scholar 

  3. Foster, N., Fedkiw, R.: Practical animation of liquids. In: Proc. of ACM SIGGRAPH 2001, pp. 23–30 (2001)

  4. Foster, N., Metaxas, D.: Realistic animation of liquids. Graph. Models Image Process. 58, 471–483 (1996)

    Article  Google Scholar 

  5. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: Proceedings of SIGGRAPH 2001, pp. 15–22 (2001)

  6. Greenwood, S.T., House, D.H.: Better with bubbles: Enhancing the visual realism of simulated fluid. In: Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 287–296 (2004)

  7. Hong, J.-M., Kim, C.-H.: Animation of bubbles in liquid. Comput. Graph. Forum (Eurograph. Proc.) 22(3), 253–262 (2003)

    Article  MathSciNet  Google Scholar 

  8. Hong, J.-M., Kim, C.-H.: Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24(3), 915–920 (2005)

    Article  MathSciNet  Google Scholar 

  9. Hong, J.-M., Lee, H.-Y., Yoon, J.-C., Kim, C.-H.: Bubbles alive. ACM Trans. Graph. (SIGGRAPH Proc.) 27(3), 48 (2008)

    Google Scholar 

  10. Kim, J., Cha, D., Chang, B., Koo, B., Ihm, I.: Practical animation of turbulent splashing water. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 335–344 (2006)

  11. Kim, B., Liu, Y., Llamas, I., Jiao, X., Rossignac, J.: Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. (SIGGRAPH Proc.) 26(3), 481–487 (2007)

    Google Scholar 

  12. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457–462 (2004)

    Article  Google Scholar 

  13. Losasso, F., Shinar, T., Selle, A., Fedkiw, R.: Multiple interacting liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 25(3), 812–819 (2006)

    Article  Google Scholar 

  14. Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008)

    Article  Google Scholar 

  15. Magnaudet, J., Eames, I.: The motion of high Reynolds number bubbles in inhomogeneous flow. Annu. Rev. Fluid Mech. 32, 659–708 (2000)

    Article  MathSciNet  Google Scholar 

  16. Mihalef, V., Unlusu, B., Metaxas, D., Sussman, M., Hussaini, M.Y.: Physics based boiling simulation. In: Proceedings of the ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 317–324 (2006)

  17. Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid–fluid interaction. In: Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 237–244 (2005)

  18. Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for smoke, water and explosions. In: Proc. of ACM SIGGRAPH 2005, pp. 910–914 (2005)

  19. Shin, S.-H., Kim, C.-H.: Target-driven liquid animation with interfacial discontinuities. Comput. Animat. Virtual Worlds 18(45), 447–453 (2007)

    Article  Google Scholar 

  20. Song, O., Shin, H., Ko, H.-S.: Stable but nondissipative water. ACM Trans. Graph. 24(1), 81–97 (2005)

    Article  Google Scholar 

  21. Stam, J.: Stable fluids. In: Proc. of ACM SIGGRAPH 1999, pp. 121–128 (1999)

  22. Shi, L., Yu, Y.: Taming liquids for rapidly changing targets. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 229–236 (2005)

  23. Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., Ueki, H.: Realistic animation of fluid with splash and foam. In: EUROGRAPHICS, vol. 22 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HY., Hong, JM. & Kim, CH. Simulation of swirling bubbly water using bubble particles. Vis Comput 25, 707–712 (2009). https://doi.org/10.1007/s00371-009-0338-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0338-0

Keywords

Navigation