Skip to main content
Log in

Coherent radiance capture of scenes under changing illumination conditions for relighting applications

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Relighting algorithms make it possible to take a model of a real-world scene and virtually modify its lighting. Unlike other methods that require controlled conditions, we introduce a new radiance capture method that allows the user to capture parts of the scene under different lighting conditions. A novel calibration method is presented that finds the positions of reflective spheres and their mathematically accurate projection onto the scene geometry. The resulting radiance distribution is used to estimate a diffuse reflectance for each object, computed coherently using the appropriate light probe image. Finally, the scene is relit using a novel illumination pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 3Dscanners: www.3dscanners.com

  2. Agusanto, K., Li, L., Chuangui, Z., Sing, N.W.: Photo-realistic rendering for augmented reality using environment illumination. In: Proceedings of IEEE/ACM International Symposium on Augmented and Mixed Reality (ISMAR’03), vol. 21, pp. 208–216 (2003)

  3. Boivin, S., Gagalowicz, A.: Image-based rendering of diffuse, specular and glossy surfaces from a single image. In: Proceedings ACM Siggraph’01 (Computer Graphics), pp. 107–116. ACM, New York (2001)

    Google Scholar 

  4. Cyberware: www.cyberware.com

  5. Debevec, P.: Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: Proceedings of ACM Siggraph’98 (Computer Graphics), pp. 189–198 (1998)

  6. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Proceedings of ACM Siggraph’97 (Computer Graphics), pp. 369–378 (1997)

  7. Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. In: Proceedings of ACM Siggraph’96 (Computer Graphics), pp. 11–20 (1996)

  8. Debevec, P. et al.: Estimating surface reflectance properties of a complex scene under captured natural illumination. USC ICT Technical Report ICT-TR-06.2004 (2004)

  9. Dror, R.O., Adelson, E.H., Willsky, A.S.: Estimating surface reflectance properties from images under unknown illumination. In: Proceedings of the SPIE Conference on Human Vision and Electronic Imaging, San Jose, CA (2001)

  10. Elkin, J.M.: A deceptively easy problem. Math. Teach. 58, 194–199 (1965)

    Google Scholar 

  11. HDRshop 2.0: http://www.hdrshop.com

  12. Jacobs, K., Loscos, C.: Classification of illumination methods for mixed-reality. Comput. Graph. Forum 25(1), 29–51 (2006)

    Article  Google Scholar 

  13. Jacobs, K., Loscos, C., Ward, G.: Automatic HDRI generation for dynamic scenes. IEEE Comput. Graph. Appl. 28(2), 84–93 (2008)

    Article  Google Scholar 

  14. Hu, G.H., Ong, S.K., Chen, Y.P., Nee, A.Y.: Reflectance modeling for a textured object under uncontrolled illumination from high dynamic range maps. Comput. Graph. 31(2), 262–270 (2007). Technical Section

    Article  Google Scholar 

  15. Leica: Hds 3000. http://www.leica-geosystems.com

  16. Li, Y., Lin, S., Kang, S.B., Lu, H., Shum, H.-Y.: Single-image reflectance estimation for relighting by iterative soft grouping. In: Proceedings, 10th Pacific Conference on Computer Graphics and Applications, pp. 483–486 (2002)

  17. Loscos, C., Frasson, M.C., Drettakis, G., Walter, B., Granier, X., Poulin, P.: Interactive virtual relighting and remodeling of real scenes. In: Lischinski, D., Larson, G. (eds.) Proceedings of 10th Eurographics Workshop on Rendering (Rendering Techniques’99), vol. 10, pp. 235–246. Springer, New York (1999)

    Google Scholar 

  18. Loscos, C., Drettakis, G., Robert, L.: Interactive virtual relighting of real scenes. IEEE Trans. Vis. Comput. Graph. 6(3), 289–305 (2000)

    Article  Google Scholar 

  19. Marschner, S.R.: Inverse rendering in computer graphics. Ph.D. Thesis, Program of Computer Graphics, Department of Computer Graphics, Cornell University, Ithaca, NY (1998)

  20. MetaCreations: Canoma. http://www.metacreations.com/products/canoma

  21. Metris: http://www.metris.com/

  22. Miller, A.R., Vegh, E.: Computing the grazing angle of specular reflection. Technical Report, Naval Research Lab., Washington, DC (1991)

  23. Mitsunaga, T., Nayar, S.K.: Radiometric self calibration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 374–380. Collins, Glasgow (1999)

    Google Scholar 

  24. Neumann, P.: Reflections on reflection in a spherical mirror. Am. Math. Mon. 105, 523–528 (1998)

    Article  MATH  Google Scholar 

  25. Okatani, T., Deguchi, K.: Estimation of illumination distribution using a specular sphere. In: Proceedings of the 15th International Conference on Pattern Recognition, vol. 3 (2000)

  26. Patow, G., Pueyo, X.: A survey on inverse rendering problems. Comput. Graph. Forum 22(4), 663–687 (2003)

    Article  Google Scholar 

  27. Pharr, M., Humphreys, G.: Physical based rendering pbrt. http://pbrt.org/

  28. Photomatix: Multimediaphoto. http://www.hdrsoft.com

  29. Realviz: Image modeller. http://www.realviz.com

  30. Sato, I., Sato, Y., Ikeuchi, K.: Acquiring a radiance distribution to superimpose virtual objects onto a real scene. IEEE Trans. Vis. Comput. Graph. 5(1), 1–12 (1999)

    Article  Google Scholar 

  31. Troccoli, A., Allen, P.K.: Relighting acquired models of outdoor scenes. In: 3DIM (2005)

  32. Troccoli, A., Allen, P.K.: Recovering illumination and texture using ratio images. In: Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06), pp. 655–662 (2006)

  33. Waldvogel, J.: The problem of the circular billiard. Elem. Math. 47, 108–113 (1992)

    MATH  MathSciNet  Google Scholar 

  34. Yu, Y., Malik, J.: Recovering photometric properties of architectural scenes from photographs. In: Proceedings of ACM Siggraph’98 (Computer Graphics), pp. 207–217. ACM, New York (1998)

    Google Scholar 

  35. Yu, Y., Debevec, P., Malik, J., Hawkins, T.: Inverse global illumination: recovering reflectance models of real scenes from photographs. In: Proceedings of ACM Siggraph’99 (Computer Graphics), pp. 215–224. ACM, New York (1999)

    Google Scholar 

  36. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celine Loscos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, K., Nielsen, A.H., Vesterbaek, J. et al. Coherent radiance capture of scenes under changing illumination conditions for relighting applications. Vis Comput 26, 171–185 (2010). https://doi.org/10.1007/s00371-009-0360-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0360-2

Keywords

Navigation