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Abstract

We describe Gauss-Newton type methods for fitting im-
plicitly defined curves and surfaces to given unorganized
data points. The methods are suitable not only for least-
squares approximation, but they can also deal with gen-
eral error functions, such as approximations to theℓ1 or ℓ∞
norm of the vector of residuals. Two different definitions
of the residuals will be discussed, which lead to two dif-
ferent classes of methods: direct methods and data–based
ones. In addition we discuss the continuous versions of
the methods, which furnish geometric interpretations as
evolution processes.

It is shown that the data–based methods – which are
less costly, as they work without the computation of the
closest points – can efficiently deal with error functions
that are adapted to noisy and uncertain data. In addition,
we observe that the interpretation as evolution process al-
lows to deal with the issues of regularization and with ad-
ditional constraints.

1 Introduction

We summarize the literature on surface fitting and de-
scribe the contributions of this paper.

1.1 Surface Fitting

Fitting a surface (or a curve) to a given set of unorga-
nized points (e.g., laser range data) is an important prob-
lem in various fields, including geometric modeling and
computer vision. In the case of parametric surfaces, due
to the influence of the parameterization, the fitting prob-

lem leads to a non–linear optimization problem. Differ-
ent approaches for dealing with the effects of this non–
linearity have been developed, including various variants
of Gauss-Newton type techniques [5, 7, 9, 13, 23, 24, 27,
29, 32, 36].

This paper focuses on the implicit representation of sur-
faces (see e.g. [35]), which offers various advantages for
surface fitting. The most important ones are the non-
existence of the parameterization problem, repairing ca-
pabilities of incomplete data and simple operations of
shape editing.

Various spaces of functions have been used to ob-
tain the implicit representations. Besides polynomials,
these include discretized level sets [22, 43], spline func-
tions [17, 26] and spaces spanned by radial basis func-
tions [10, 20].

Several techniques for approximating unorganized
point cloud data by implicitly defined curves and surfaces
are described in the literature. The fitting of conic sections
to scattered data, whereby a special technique for estimat-
ing the residuals is used, is discussed in [28]. While a sim-
ple linear normalization is used in [25] in order to avoid
the trivial solution , a data–dependent normalization is in-
troduced in [34]. The evolution of discretized level sets
for surface reconstruction is presented in [42, 43]. In [31]
the reconstruction of implicit surfaces from given polygo-
nal models is considered. Active implicit B-spline curves
for fitting unorganized point clouds were used in [41], ex-
tending the geometric distance minimization in the case of
implicitly defined curves using a trust-region algorithm.

Different methods for the case of orientable point cloud
data, where each point can be equipped with a normal vec-
tor, are described in [10, 16, 33, 39]. These techniques
use off–surface points or the simultaneous approximation
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of points and normals in order to avoid the trivial solution.

The use of T-spline level sets (which were introduced
in [30]) is proposed in [11, 39, 40] making it possible
to adapt the distribution of the degrees of freedom to
the given geometric data. These papers propose an evo-
lution process combined with a distance field constraint
that completely avoids the use of frequent re-initialization
steps. The presented techniques are capable of dealing
with various constraints such as convexity, area/volume
and range constraints.

Most of these fitting techniques are based on variants
of least–squares approximation, i.e., they consider theℓ2

norm of the vector of residuals (which may be defined in
different ways, depending on the representation). How-
ever, this may not be the optimal approach in many situ-
ations, as one tacitly assumes a Gaussian distribution of
the error that may be present in the data.

Often, this implicit assumption concerning the error is
not justified. In the presence of outliers (data with large
error), these may destroy the quality of the approximation,
since their influence grows quadratically with the distance
to the curve or surface. If the data are very precise, then it
is more appropriate to minimize the maximum deviation
between the model and the data. Obviously, it is important
to adjust the norm carefully to the problem.

As an alternative, one may use other norms, such as
ℓp norms of the vector of residuals or approximations
thereof. So far, this has been done mostly for curves and
surfaces that are defined by parametric representations.
[37] describes two methods for discreteℓp approximation.
[15] uses linear programming for approximateℓ1 and ap-
proximateℓ∞ fitting of parametric curves.

The Gauss–Newton method forℓ1 orthogonal distance
regression is studied in [38]. [6] use theℓ1 and ℓ∞ for
fitting parametric curves and surfaces. The case of gen-
eral ℓp norms is described in [8]. In a recent manuscript
[3], we study the relation between Gauss–Newton–type
methods for approximation with respect to general norm-
like functions and the technique of iteratively re–weighted
least squares. The latter is a classical tool in the field of ro-
bust statistics [14], by extending the observations in [18]
to the case of vector–valued residuals.

1.2 Contributions and Outline

In the present paper we describe Gauss-Newton type
methods for fitting implicitly defined curves and surfaces
to given unorganized data points. As a main difference to
the parametric case, the non–linearity – and hence the use
of Gauss-Newton techniques – is not due to the influence
of the parameterization, but to the minimization of a gen-
eral non-linear function of the vector of residuals, which
is not necessarily the sum of squares.

We consider two possible definitions of the residuals.
This leads to two classes of methods, which will be called
direct methods(see Section 3) anddata–based methods
(see Section 4), respectively.

Both methods can be seen as (discrete) iterative meth-
ods, where an update of the unknown shape parameters is
computed in each step. Alternatively they can be identi-
fied with continuous evolution processes which generate a
time–dependent family of curves or surfaces. Both view-
points are equivalent.

The data–based methods are less costly, as they work
without the need of computing the closest points. They
can efficiently deal with error functions that are adapted to
noisy and uncertain data. The interpretation as evolution
process allows to deal with the issues of regularization
and with additional constraints.

2 Preliminaries

Let a number of points{p j} j=1..M ⊂ R
d in the plane (d =

2) or in space (d = 3) be given. We are interested to find a
hypersurface (i.e. a curve or a surface) that approximates
these points. Since the used concepts do not differ for
curves and surfaces we will refer mostly to the surface
case.

A surface can be described implicitly as the zero-set
of a (as we shall assume)C 2 smooth trivariate function
fs : R

3 → R, i.e.

F = {x ∈ Ω ⊂ R
3| fs(x) = 0}. (1)

The notationfs shall emphasize that the underlying func-
tion can entirely be described by a vectors= (s1, . . . ,sm)⊤

of m shape parameters, wheres∈ R
m. We assume thatfs

is twice differentiable with respect to the shape parame-
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terss. The gradients with respect tox ands will be de-
noted by

∇x = (
∂

∂x1
, . . . ,

∂
∂xd

) and ∇s = (
∂

∂s1
, . . . ,

∂
∂sm

),

respectively.

Example 2.1. The important class of algebraic
curves/surfaces uses a polynomial of a given degree
n as functionfs(x).

In the cased = 2, one may e.g. choose the bivariate
Bernstein-Bézier basis with respect to a suitable domain
triangle∆ABC⊂ R

2,

fs(x) = ∑
i+ j+k=n

bi jk
n!

i! j!k!
uiv jwk, (2)

where(u,v,w) are the barycentric coordinates of the point
x ∈ R

2 with respect to the domain triangle. In this case,
the vector of shape parameters is simply the collection of
all coefficientsbi jk .

Example 2.2. More generally, one may consider implic-
itly defined surfaces

fs(x) =
N

∑
i=0

siφi(x), (3)

where the basis functionsφi can be chosen, e.g., as ra-
dial basis functions [10], tensor–product splines or sub-
sets thereof [17] or T-splines [39].

3 Geometric Fitting

When fitting a curve/surface to given data, one mini-
mizes usually certain geometric distances to the given
data pointsp j . As the data exceed in general the degrees
of freedom this is done via a least-squares approach. In
the sequel we generalize this technique.

3.1 The generalized fitting problem and
norm-like functions

In many application a least-squares approach is not ap-
propriate as it assumes implicitly that the measured er-
rors follow a Gaussian distribution. However, in the pres-
ence of erroneous data this assumption cannot be justified.

Thus we extend the usual least-squares approach to gen-
eral functions by considering the objective function

F =
M

∑
j=1

N(‖p j −c j(s)‖) → min (4)

where

c j(s) = argmin‖p j −pc‖ subject tofs(pc) = 0, (5)

i.e.,c j(s) is the closest point from the fitting curve/surface
to the data pointpc. This more general technique replaces
the usualℓ2 norm of the residuals by a functionN(x). It is
assumed to satisfy the following definition of a norm-like
function (cf. [21, 3]):

Definition 3.1. A C 2 functionN(x) : R
+ → R

+ is said to
benorm-like if there existsε ∈ R

+ such that the deriva-
tive satisfies

N′(x) = x ·w(x) for x∈ (0,ε] (6)

where the associatedweight function w(x) is positive. If
the weight functionw = w(x) is the restriction of aC 1

function such thatw : [0,ε] → [k,K] with k,K ∈ R
+, then

we will call it positive andbounded.

For example, the norm-like functions

N(x) = xp (7)

are associated with the weight functions

w(x) = pxp−2. (8)

For 1< p < 2, the weight functions are positive, but not
bounded. In the casep > 2 the weight functions are
bounded but not positive (due tow(0) = 0). Forp = 2 the
weight function is both, positive and bounded. Of course
this special case reduces to the usualℓ2 approximation.

As another example, consider the norm-like function

N(x) = 1−exp(−x2) (9)

with the weight function

w(x) = 2exp(−x2). (10)

It can be used as an alternative to theℓ1 norm. The weight
function is positive and bounded.
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3.2 A Gauss–Newton–type method

In the following we apply the widely used Gauss–Newton
approach to the non-linear problem (4). In a first step we
provide the gradient and the Hessian of the objective func-
tion, where we use the abbreviationR j = p j − c j(s) for
the residual vectors,

∇F =
M

∑
j=1

N′(‖R j‖)
R⊤

j

‖R j‖
∇sR j

=
M

∑
j=1

w(‖R j‖)‖R j‖
R⊤

j

‖R j‖
∇s(−c j(s)).

The gradient−∇sc j(s) can be computed from the condi-
tion fs(c j(s)) ≡ 0, which implies

(∇s fs)(c j(s))+ (∇x fs)(c j(s))∇sc j(s) = 0. (11)

For any regular surface point, i.e.∇x fs(c j(s)) 6= 0, the
residualR j is parallel to the gradient∇x fs(c j(s)):

∇x fs(c j(s))
‖∇x fs(c j(s))‖

= sign(∇x fs(c j(s))R j )
R⊤

j

‖R j‖
. (12)

Combining (11) and (12) yields

R⊤
j

‖R j‖
∇s(−c j(s)) =

∇s fs(c j(s))
‖∇x fs(c j (s))‖

sign(∇x fs(c j(s))R j )

which gives the gradient of the objective function

∇F =
M

∑
j=1

wj‖R j‖
∇s fs(c j(s))

‖∇x fs(c j (s))‖
sign(∇x fs(c j(s))R j ).

where we used the abbreviationwj = w(‖R j‖). As a fur-
ther simplification we omit the arguments in the following
discussion. However, we keep in mind thatfs and its gra-
dients are evaluated at the surface pointsc j(s). Thus the
Hessian is

HF = ∇(∇F⊤) (13)

=
N

∑
j=1

w′
j‖R j‖

∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

+wj
∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

+wj‖R j‖(
∇s∇s fs
‖∇x fs‖

−
∇s f⊤s ∇x fs∇s∇x fs

‖∇x fs‖3 )

During the iteration, the Hessian has to be evaluated in
each single step. Especially in the presence of a high
number of data points this might be computationally ex-
pensive. Moreover, if the functionF is only C 1, no sec-
ond order derivatives are available and the Hessian does
not exist. For this reason we do not use the exact Hes-
sian, but apply some simplifications to (13) in order to
obtain an approximate version. More precisely, we adopt
the paradigm of Gauss–Newton methods and omit the first
and the last part of the expansion in (13),

H∗
F =

M

∑
j=1

wj
∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

. (14)

The following result justifies the choice of this simplifica-
tion.

Proposition 1. Assume that̄s is a minimizer of (4) such
that fs̄(p j) = 0 and‖∇x fs̄(p j)‖ > 0 for all data pointsp j .
Let s→ fs(x)∈C 2(Rm,R) be bounded for allx∈Ω⊂R

2

andw be a positive and bounded weight function. Then

lim
s→s̄

HF = H∗
F .

Proof: First we note that the boundedness offs(x) and
its C 2 continuity implies that the derivatives offs(x) up
to second order are bounded as well. Now we consider
the first and the third term in (13) separately. For the first
term we obtain

T1 ≤ |w′
j |‖R j‖

∥

∥

∥

∥

∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

∥

∥

∥

∥

≤ |w′|‖R j‖
‖∇s fs‖2

‖∇x fs‖2 .

Consequently,T1 vanishes in the limit as‖R j‖ → 0 for
s→ s̄ sincew′ is bounded and‖∇x fs(p j)‖ > 0. The third
term can be bounded by

T3 ≤ wj ‖R j‖(
‖∇s∇s fs‖
‖∇x fs‖

+‖∇s f⊤s ‖
‖∇x fs‖
‖∇x fs‖3‖∇s∇x fs‖).

Again, this part vanishes due to the boundedness of all in-
volved derivatives and‖∇x fs‖> 0. The remaining second
term coincides with the approximate HessianH∗

F . �

From this result we can conclude immediately - similar to
the well known Gauss–Newton method forℓ2 approxima-
tion - a quadratic convergence rate in the limit.
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Summing up, we obtain indeed a generalized Gauss–
Newton–type method with the desired properties if we
built the linear system

H∗
F ∆s+ ∇F⊤ = 0 (15)

which leads to

M

∑
j=1

wj
∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

∆s (16)

+
M

∑
j=1

wj‖R j‖
∇s f⊤s
‖∇x fs‖

sign(∇x fsR j) = 0.

As all functions and gradients are evaluated at points of
the surface, we will refer to (16) as thesurface–based
Gauss-Newton-type methodfor minimizing general func-
tionsN = N(‖R j‖) of the residuals in the case of implic-
itly defined surfaces.

3.3 Continuous version and its geometrical
interpretation

In this section we propose an interpretation of the Gauss-
Newton method that shall provide additional geometrical
insight in the fitting process. Recall that in each step of
the approximation described in the last section the initial
surface moves closer to the target points. This movement
shall now be interpreted as discrete steps of a continuous
evolution process.

In fact, equation (16) can be seen as the minimum con-
dition of (where we used (12)):

M

∑
j=1

wj

(

(

R j +
∇x f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

ṡ
)⊤ ∇x f⊤s

‖∇x fs‖

)2

→ min
ṡ

,

(17)

where we simply replaced the discrete update∆s by its
continuous counter partṡ.

Note that

n j =
∇x f⊤s
‖∇x fs‖

is the unit normal of a regular point on the surface and that

vn = −
∇x f⊤s

‖∇x fs‖2 ḟs = −
∇x f⊤s
‖∇x fs‖2 ∇s fsṡ,

is the normal velocity of a regular surface point. Hence
we can rewrite (17) as the least-squares problem

M

∑
j=1

wj((R j −vn)⊤n j)
2 → min

ṡ
. (18)

This reformulation furnishes following interpretation:

Each data point attracts its associated closest
point on the surface with a certain velocityvn.
In the normal direction of the surface, the ve-
locity shall be such that it has the same magni-
tude as the distance to the data point. The dif-
ference between the actual and the imposed ve-
locity is minimized in the least-squares sense,
where each point is weighted with the corre-
sponding value of the weight functionwj .

This geometric interpretation of the geometric fitting is
visualized in Fig. 1, top. See also [2, 4] for a more abstract
discussion of this type of shape evolutions for the case of
least-square approximation (i.e.,N(x) = x2).

3.4 Remarks on closest point computation

Note that for the direct distance minimization the closest
point of each data point has to be computed. See [1] for
a robust method for closest point computation. Although
the computation of a single closest point requires only the
solution of a non-linear system of two or three unknowns,
the overall effort may be quite substantial.

First, the systems are in general non-linear and can not
be solved directly. Second, the number of data points can
be quite high, and the closest points need to be computed
in each step of the iterative method.

Consequently, it is desirable to avoid the computation
of closest points as will be shown in the next section.

4 Algebraic Fitting

This method relies on the following observation. By def-
inition, a pointx lies on an implicitly defined surface if
its algebraic distance to the surface is zero, i.e.,fs(x) = 0.
For points in the vicinity of the surface the function value
is expected to be close to zero.
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surface-based evolution
p j

cj (s)

v j

point-based evolution

p j

cj (s)

v j

f = 0

f = k1

f = k2

f = k3

Figure 1: Velocities for surface-based evolution
are imposed at closest points on surface (top). Ve-
locities for point-based evolution are imposed at
data points (bottom).

4.1 The generalized fitting problem for
Sampson distances

Taubin [34] proposed to use the Sampson distance [28] as
an approximation to the exact geometric distance. It is the
gradient–weighted algebraic error,

dS =
| fs(p j )|

‖∇x f (p j )‖
. (19)

With this we obtain the objective function

F =
M

∑
j=1

N(
| fs(p j )|

‖∇x fs(p j )‖
) → min. (20)

As an important observation we note that in contrast to the
direct distance minimization, the gradients and functions
are now evaluated at the data points.

4.2 A Gauss–Newton–type method

In the following discussion we skip again the arguments
(keeping the dependency on the data pointsp j in mind).
The gradient of (20) is

∇F =
M

∑
j=1

N′
j(

sign( fs)∇s fs
‖∇x fs‖

−
| fs|∇x fs∇s∇x fs

‖∇x fs‖3 )

The second term vanishes for zero-residual problems.
Omitting it and usingN′(x) = xw(x) yields an approxi-

mate gradient,

∇F∗ =
M

∑
j=1

wj
fs∇s fs

‖∇x fs‖2 .

The Hessian of (20) is

HF = ∇(∇F∗⊤) =

=
M

∑
j=1

wj fs(
∇s∇s fs
‖∇x fs‖2 −

2∇s fs∇s∇x fs
‖∇x fs‖4 )

+wj
∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

+w′
j

fs∇s fs
‖∇x fs‖2

(

sign( fs)∇s fs
‖∇x fs‖

−
| fs|∇x fs∇s∇x fs

‖∇x fs‖3

)

.

Again, we consider a simplified version of the exact Hes-
sian:

H∗
F =

M

∑
j=1

wj
∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

Proposition 2. Assume that̄s is a minimizer of(20)such
that f̄s(p j) = 0 and ‖∇x fs̄(p j )‖ > 0. Let s → fs(x) ∈
C 2(Rm,R) be bounded for allx ∈ Ω ⊂ R

2 and w be a
positive and bounded weight function. Then

lim
s→s̄

HF = H∗
F .

The proof is similar to the one of Proposition 1.
As for the geometric fitting we obtain a linear system

for the update vector∆s:

M

∑
j=1

wj
∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

∆s+
M

∑
j=1

wj
fs∇s f⊤s
‖∇x fs‖2 = 0 (21)

However, the difference to the direct method is signifi-
cant. No closest point computation is needed since all
functions and derivatives are evaluated at the data points.
Therefore we call (21)data–based Gauss-Newton-type
method.

Fig. 2 shows a first example of a data–based Gauss–
Newton–type method forℓ2 approximation.

4.3 Continuous version and geometric in-
terpretation

Similar to the surface-based Gauss-Newton-type method
we interpret also the data-based method as an evolution
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Figure 2: Initial value (left), an intermediate step (center) and the final result (right) of a data–based Gauss–Newton–
type method (or equivalently: of an evolution process) forℓ2–approximation.

with a suitable speed function. Again, it can easily be
verified that

M

∑
j=1

wj

(

(
∇x fs fs
‖∇x fs‖2 +

∇x fs∇s fs
‖∇x fs‖2 ṡ)

∇x f⊤s
‖∇x fs‖

)2

→ min
ṡ

is the minimum condition of (21) where we replaced again
∆s by ṡ. This furnishes the following geometric interpre-
tation, which is different from the surface–based case:

Each data point imposes a velocity on the level
set of the surfaces passing through it. In the
normal direction of the level set, the velocity
shall be equal to the Sampson distance of the
point to the surface. The difference between the
actual and the imposed velocity is minimized
in the least-squares sense, where each point is
weighted with the corresponding value of the
weight functionwj .

This geometric interpretation of the algebraic fitting is vi-
sualized in Fig. 1, bottom.

5 Discussion and examples

We compare direct methods and iterative (evolution-
based) methods and describe the use of two different reg-
ularization techniques. Next we analyze the differences
between surface–based and data–based methods. Finally
we address the use of general norm-like functions.

5.1 Direct methods vs. iterative methods

Many direct techniques, such as Taubin’s method [34],
provide the result after a single step (though an iterative

Figure 3: 180 points from a parametric surface and ran-
domly generated error. Data–based evolution forℓ2 ap-
proximation with distance field constraint (left), see text
for details. Taubin’s method (right) is not able to deal with
data, due to the incorrectly chosen degree of the algebraic
surface.

method may be needed in order to solve the generalized
eigenvalue problem). On the one hand this seems to be
an advantage, since no iterations and therefore no con-
vergence analysis is needed. On the other hand, once the
result is computed, it can no longer be influenced. Iter-
ative methods provide the flexibility to adjust certain pa-
rameters – such as regularization parameters – during the
approximation.

An example – which compares Taubin’s method and an
ℓ2 approximation by evolution – is shown in Fig. 3. The
latter technique gives the correct result, while Taubin’s
fit encounters some problems. The interpretation of an
iteration as discrete steps of a continuous evolution offers
even more flexibility. This is especially true for the choice
of the regularization parameters.
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5.2 Regularization

An inherent problem of fitting with implicit
curves/surfaces is that the solution is not unique as
all functionsλ f (x) with λ ∈ R\{0} possess the same
zero contour (1). Consequently, suitable regularization
terms have to be incorporated in order to avoid this
ambiguity.

A simple strategy is to constrain the values of some
coefficients, such as the constant term in the case of al-
gebraic curves [25]. However, this approach constrains
the space of solutions as it prevents the curve from pass-
ing through the origin. Instead, one should prefer data-
dependent regularization functionals as in [34]. Also, if
additional normal vector information is available (that is,
if the given data are orientable in the sense that each point
can be equipped with a normal vector), then one may use
this information to define additional terms in the objec-
tive function that measure the deviation between the given
normals and the real ones, [17].

In addition to these constraints that shall mainly en-
sure a unique solution to the optimization problem, one
may also want to influence the shape of the resulting
curve/surface. Especially algebraic surfaces suffer of-
ten from unwanted oscillations, which may produce un-
wanted branches in the domain of interest. These can be
avoided by adding regularization terms such as the thin
plate energy, see [17].

In the sequel we discuss thedistance field constraint,
which was proposed in [39, 40]. As the underlying idea,
in each step, the level set function is to be pushed to-
wards a signed distance function. This can be achieved
by adding the term

∫

Ω

(
d
dt
‖∇x fs(x)‖+‖∇x fs(x)‖−1)2dx → min (22)

to the objective function. Here we refer to the continuous
version of the method, see Sections 3.3 and 4.3.

The interpretation of this regularization term is as fol-
lows. If the norm of the gradient in a point equals 1
then its time derivative is zero, hence it shall remain un-
changed. Otherwise the norm of the gradient is modified
such that it gets closer to 1. Clearly this condition avoids
the zero solution for the level set function.

Since the integration over the domain of interest might
be complicated, we adopt the following approach. We

discretize (22) by applying it to a number of pointsxi in
the domain of interest. This leads to

∑
i

(
d
dt
‖∇x fs(xi)‖+‖∇x fs(xi)‖−1)2 → min. (23)

Theoretically, the distance field constraint can be imposed
to a very dense grid of points in the domain of interest.
However, a unit gradient field exists only in some neigh-
borhood of the zero contour, bounded by the evolute of
the curve or by the focal surfaces of the surface.

Since this neighborhood is unknown we use the follow-
ing strategy. We sample a number of points on a regular
grid and choose those points that are close to the curve
or surface. In order to avoid the time-consuming dis-
tance computation we allow all points that have a small
Sampson distance or alternatively, a small absolute func-
tion value.

Alternatively, one may also impose a side condition
similar to the one proposed in [34]. There it was required
that the average norm of the gradients in the data points
shall be equal to 1. In our setting this idea can be realized
via

(
M

∑
i=1

d
dt
‖∇x fs(xi)‖+

M

∑
i=1

‖∇x fs(xi)‖−M)2 →min. (24)

Note, that in contrast to the distance field constraint, this
normalization term does not prevent the evolution from
finding the exact solution. In fact it only rescales the
defining equationfs. However, (24) is only one single
condition on the coefficients.

In the presence of additional singularities, e.g. if the
number of degrees of freedom offs has been chosen too
large, one still needs the distance field constraint in order
to avoid degeneracies such as additional branches in the
domain of interest.

5.3 Step size control

In order to ensure a robust convergence behaviour, the
step size parameterh≤ 1 has to be choosen carefully. Us-
ing the interpretation of an evolution,h can be computed
such that the pointscs(u j) do not move more than a certain
threshold. As a good strategy one may relate this maxi-
mal movement to the size of the data set (eg. the diameter
of the bounding box). However, the step size should be
relaxed to 1 in the limit to obtain fast convergence rates.
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(a) (b) (c) (d)

Figure 4: We consider a point cloud that consists of two nested spheres. As an initial value we choose a plane as
displayed in (a). During the evolution process forℓ2 approximation of the Sampson distances, the surface matches
first the outer part of the points (b). Simultaneously, a second branch of the surfaces emerges inside the outer sphere,
which fits itself to the inner points (c). Note that for visualization purposes a part of the outer surface is clipped away.

initial position after 7 steps after 10 steps after 15 steps

Figure 5: Step wiseℓ2 approximation of 240 points sampled from a torus with additional random error.

5.4 Surface–based vs. data–based methods

As shown earlier, the Gauss-Newton approach to exact
distance minimization led to the surface–based evolution
process. On the other hand, the approximate distance
minimization (based on the Sampson distance) can be in-
terpreted as a data–based evolution process, see Fig. 1.

In the surface–based approach (top), the velocities (dot-
ted arrows) are directly prescribed at the closest points
which lie on the surface. Thus the closest points – and
consequently the curve/surfacef = 0 – is pushed towards
the data points. The magnitude of the movement is de-
rived from the Euclidean distance from a data point to its
associated closest point.

Using the data–based approach (bottom), the velocities
are applied to the data points. The geometric interpreta-
tion is now slightly different. We do not move the surface
directly, but instead the forces are applied to a certain level
set surfacef = const. that passes through the data point.
The magnitude of the velocity is given by the Sampson
distance from the data point to the surface. In the sketch
these velocities are represented by the dashed arrows.

As an obvious difference between the data–based and
the surface–based evolution, no closest points are needed
for the first technique. When considering the computa-
tional costs, this is a powerful argument to favor the ap-
proximate distance minimization. Moreover, this method
can handle a specific class of topology changes more eas-
ily as demonstrated in the next example which is shown
in Fig. 4.

On the other hand, the surface–based technique acts di-
rectly on the true geometric distance errors, and not on an
approximation. Consequently, one may expect that the re-
sults are more reliable. The choice of the most appropriate
method depends on the application background.

Following our experiences, the data–based method can
deal with such situations as shown in Fig. 4 better than the
surface–based approach. Using the latter method, the ini-
tial surface converges in the beginning towards the outer
sphere as expected. But then it does not stop at the bound-
ary but is pulled inside the point cloud as it is attracted be
the inner points too.

The data–based method seems to be more appropriate
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to deal with this kind of topology changes. However, this
flexibility causes also problems, since unwanted branches
may appear during the evolution.

Summing up, for simple shapes the surface–based evo-
lution may be preferred since it is not so vulnerable to un-
wanted topology changes. If one needs more flexibility in
order to fit complicated shapes, the data–based evolution
is more appropriate. But one has to use more rigorous reg-
ularization techniques in order to guarantee a stable evo-
lution.

The application of the data–based technique to spatial
data is shown in Fig. 5. A point cloud sampled from a
torus was approximated using theℓ2 norm.

5.5 Robust fitting via general norm-like
functions

Finally we demonstrate the advantages of general norm-
like functions. We present a comparison of an approx-
imate ℓ1, an ℓ2, and an approximateℓ∞ fit, see Fig. 6.
While the first one uses again the weight function which
is obtained from (9), the last one usesℓp approximation
for a relatively large value ofp.

Starting from the initial position shown in the top left
corner, we obtain three different approximations. The
norms of the residual vectors are shown in the three plots
on the right–hand side. One may clearly see that the ap-
proximateℓ∞ approximation produces the smallest maxi-
mum distance error (0.26 vs. 0.46 and 0.49 for theℓ2 and
the approximateℓ1 approximation).

Fig. 7 shows the same effect for spatial data, sampled
from a hyperboloid of revolution. Again one can see the
approximations obtained with different norm-like func-
tions along with the different residuals of the 141 data
points.

Summing up, by using the various approximation
methods, different assumptions or experiences concern-
ing the error distribution can be taken into account.

6 Conclusion

We investigated several methods for fitting implicitly de-
fined surfaces to given point data. More precisely, we
generalized the usual Gauss-Newton technique for least-
squares approximation by replacing theℓ2 norm of the

vector of residuals by a norm-like functionN(x). In par-
ticular, this norm-like function can be chosen as an ap-
proximation ofℓ1 or ℓ∞. Each choice provides certain
advantages, depending on the error distribution.

All methods can be equipped with two equivalent inter-
pretations. One may either see them as discrete iterative
methods, or as evolution processes, where the evolution
of a shape is governed by a differential equation. The lat-
ter framework allows to introduce additional constraints,
such as the distance field constraint (see Section 5.1 and
[39]) as well as range, volume and convexity constraints,
see [11].

If the residuals are chosen to be the exact geometric dis-
tances from the data points to the surface, then one obtains
a weighted version of the evolution method introduced by
[5], but now for the case of implicitly defined curves and
surfaces. In this setting the evolution is obtained by as-
signing to certain surface points a given velocity. The sur-
face points are simply the closest points on the curve and
the velocities are obtained from the distances from these
points to their associated data points. This technique has
been called thedirectapproach.

Alternatively, one can replace the exact geometric dis-
tances by some approximate distance. When choosing the
Sampson distance, the obtained Gauss-Newton-type tech-
nique yields again a method that can be interpreted as an
evolution. But in contrast to the previous method the ve-
locities are assigned at the data points, and the method has
been called thedata–basedone.

Clearly, the latter method does not need closest point
computations, which is an advantage. On the other hand,
one may feel more comfortable with the direct method, as
it works with the real distances, and not with approxima-
tions.

The aim of this paper was to analyze the different meth-
ods from a theoretical point of view, and to illustrate the
theory by a few simple but representative examples. Fu-
ture work may be devoted to the practical exploitation of
these observations in a framework for 3D object recon-
struction, similar to the results in [40].

Currently, our implementation - which is based on al-
gebraic surfaces (i.e. zero sets of polynomials)- is limited
to relatively small data sets, due to the global support of
the basis functions.

In order to deal with real-world scattered data sets, the
methods presented in this paper should be combined with
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Figure 6: Comparison of approximateℓ1, ℓ2, and approximateℓ∞ approximation of 40 data points with an outlier by a
parabola.
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Figure 7: Comparison of approximateℓ1, ℓ2, and approximateℓ∞ approximation of 140 data points with an outlier by
a quadric.
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hierarchical approaches and segmentation techniques, see
[12, 19].
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[2] Aigner, M., Jüttler, B.: Approximation flows in
shape manifolds. In: P. Chenin, T. Lyche, L. Schu-
maker (eds.) Curve and Surface Design: Avignon
2006, pp. 1–10. Nashboro Press (2007)
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[40] Yang, H., Jüttler, B.: Evolution of T-spline level sets
for meshing non-uniformly sampled and incomplete
data. The Visual Computer24(6), 435–448 (2008)

[41] Yang, Z., Deng, J., Chen, F.: Fitting unorganized
point clouds with active implicit B-spline curves.
The Visual Computer21, 831–839 (2005)

[42] Zeng, H.F., Liu, Z.G., Lin, Z.H.: Pde-driven implicit
reconstruction of 3d object. In: CGIV ’05: Proceed-
ings of the International Conference on Computer
Graphics, Imaging and Visualization, pp. 251–256.
IEEE Computer Society (2005)

[43] Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface re-
construction using the level set method. In: VLSM
’01: Proc. of the IEEE Workshop on Variational and
Level Set Methods, pp. 194–201 (2001)

13


