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Abstract lem leads to a non—linear optimization problem. Differ-
ent approaches for dealing with the effects of this non—
We describe Gauss-Newton type methods for fitting irfinearity have been developed, including various variants
plicitly defined curves and surfaces to given unorganizefiGauss-Newton type techniques [5, 7, 9, 13, 23, 24, 27,
data points. The methods are suitable not only for leag®, 32, 36].
squares approximation, but they can also deal with genThis paper focuses on the implicit representation of sur-
eral error functions, such as approximations to/ther (.,  faces (see e.g. [35]), which offers various advantages for
norm of the vector of residuals. Two different definitionsurface fitting. The most important ones are the non-
of the residuals will be discussed, which lead to two digxistence of the parameterization problem, repairing ca-
ferent classes of methods: direct methods and data—bassisilities of incomplete data and simple operations of
ones. In addition we discuss the continuous versionsgbfape editing.
the methods, which furnish geometric interpretations asvarious spaces of functions have been used to ob-
evolution processes. tain the implicit representations. Besides polynomials,
It is shown that the data—based methods — which ahese include discretized level sets [22, 43], spline func-
less costly, as they work without the computation of thions [17, 26] and spaces spanned by radial basis func-
closest points — can efficiently deal with error functiongons [10, 20].
that are adapted to noisy and uncertain data. In additionSeveral techniques for approximating unorganized
we observe that the interpretation as evolution processgint cloud data by implicitly defined curves and surfaces
lows to deal with the issues of regularization and with adre described in the literature. The fitting of conic seation
ditional constraints. to scattered data, whereby a special technique for estimat-
ing the residuals is used, is discussed in [28]. While a sim-
] ple linear normalization is used in [25] in order to avoid
1 Introduction the trivial solution , a data—dependent normalizationds in
troduced in [34]. The evolution of discretized level sets
We summarize the literature on surface fitting and dgyr surface reconstruction is presented in [42, 43]. In[31]

scribe the contributions of this paper. the reconstruction of implicit surfaces from given polygo-
nal models is considered. Active implicit B-spline curves
1.1 Surface Fitting for fitting unorganized point clouds were used in [41], ex-

tending the geometric distance minimization in the case of
Fitting a surface (or a curve) to a given set of unorgamplicitly defined curves using a trust-region algorithm.
nized points (e.g., laser range data) is an important probDifferent methods for the case of orientable point cloud
lem in various fields, including geometric modeling andata, where each point can be equipped with a normal vec-
computer vision. In the case of parametric surfaces, doe, are described in [10, 16, 33, 39]. These techniques
to the influence of the parameterization, the fitting probse off-surface points or the simultaneous approximation



of points and normals in order to avoid the trivial solutiorl.2 ~ Contributions and Outline

The use of T-spline level sets (which were introducedd the present paper we describe Gauss-Newton type
in [30]) is proposed in [11, 39, 40] making it possiblénethods for fitting implicitly defined curves and surfaces
to adapt the distribution of the degrees of freedom t@ given unorganized data points. As a main difference to
the given geometric data. These papers propose an éhe-parametric case, the non-linearity — and hence the use
lution process combined with a distance field constra@f Gauss-Newton techniques — is not due to the influence
that completely avoids the use of frequent re-initializati of the parameterization, but to the minimization of a gen-
steps. The presented techniques are capable of deaif non-linear function of the vector of residuals, which
with various constraints such as convexity, area/volurigenot necessarily the sum of squares.
and range constraints. We consider two possible definitions of the residuals.

This leads to two classes of methods, which will be called

Most of these fitting techniques are based on variagiigect methodgsee Section 3) andata—based methods
of least-squares approximation, i.e., they considerihe(see Section 4), respectively.
norm of the vector of residuals (which may be defined in goth methods can be seen as (discrete) iterative meth-
different ways, depending on the representation). Hogds, where an update of the unknown shape parameters is
ever, this may not be the optimal approach in many sitgomputed in each step. Alternatively they can be identi-
ations, as one tacitly assumes a Gaussian distributiorjg§l with continuous evolution processes which generate a
the error that may be present in the data. time—dependent family of curves or surfaces. Both view-

C . . Pomts are equivalent.
Often, this implicit assumption concerning the error is
S . : The data—based methods are less costly, as they work
not justified. In the presence of outliers (data with large. . :
. . without the need of computing the closest points. They
error), these may destroy the quality of the approximation - . .
. T d . . cdn efficiently deal with error functions that are adapted to
since their influence grows quadratically with the distance . . . . .
; noisy and uncertain data. The interpretation as evolution
to the curve or surface. If the data are very precise, then It . : R
. ; . ’ .. process allows to deal with the issues of regularization
is more appropriate to minimize the maximum deviati N 4 with additional constraints
between the model and the data. Obviously, itis |mportanr%

to adjust the norm carefully to the problem.

As an alternative, one may use other norms, such%s Preliminaries
¢p norms of the vector of residuals or approximations
thereof. So far, this has been done mostly for curves arf @ number of point$p; }j—1.m C R%in the planed =
surfaces that are defined by parametric representatich€)r in spaced = 3) be given. We are interested to find a
[37] describes two methods for discréjgapproximation. hypersurface (i.e. a curve or a surface) that approximates

[15] uses linear programming for approximdl&ind ap- these pOintS. Since the used Concepts do not differ for
proximate/., fitting of parametric curves. curves and surfaces we will refer mostly to the surface

case.

The Gauss—Newton method fér orthogonal distance A surface can be described implicitly as the zero-set
regression is studied in [38]. [6] use tlig and (. for of a (as we shall assum&? smooth trivariate function
fitting parametric curves and surfaces. The case of gép:R3 — R, i.e.
eral{, norms is described in [8]. In a recent manuscript
[3], we study the relation between Gauss—Newton-type % ={xe€QC R3| fs(x) = 0}. (1)
methods for approximation with respect to general norm-
like functions and the technique of iteratively re—weighteT he notationfs shall emphasize that the underlying func-
least squares. The latter is a classical tool in the field-of t@n can entirely be described by a vecter (s;,...,Sn) "
bust statistics [14], by extending the observations in [18] m shape parameterasheres € R™. We assume thdt
to the case of vector-valued residuals. is twice differentiable with respect to the shape parame-



terss. The gradients with respect toands will be de- Thus we extend the usual least-squares approach to gen-

noted by eral functions by considering the objective function
7} 7} 7] 0 M
DX:(a_X]_,”"E) and Ds:(av---,a), FZZN(Hpj—Cj(S)H)—’min (4)
=1
respectively.
where
Example 2.1. The important class of algebraic
curves/surfaces uses a polynomial of a given degreg;j(s) = argmir|pj—p°|| subject tofs(p®) =0, (5)

n as functionfs(x). , . . -
In the cased — 2, one may e.g. choose the bivariate®Ci (s) is the closest point from the fitting curve/surface

Bernstein-Bézier basis with respect to a suitable domahihe data poinp®. This more general technique replaces

triangleAABC C R?, the usual; norm of the residuals by a functidf(x). Itis
assumed to satisfy the following definition of a norm-like
n . i .
fs(x) = Z bij T UVInk, ) function (cf. [21, 3]):
i+j+k=n K

Definition 3.1. A €2 functionN(x) : R™ — R* is said to
where(u,v,w) are the barycentric coordinates of the poifte norm-like if there existss € R* such that the deriva-
x € R? with respect to the domain triangle. In this casélYe satisfies
the vector of shape parameters is simply the collectionof _, .
all coefficientsb . N'(x) =x-w(x) for xe(0,¢] ©6)

Example 2.2. More generally, one may consider implicWhere the associatedeight function w(x) is positive. If
itly defined surfaces the weight functionw = w(x) is the restriction of &5

function such thawv: [0, €] — [k, K] with k,K € R*, then
we will call it positive andbounded

N
) = 3 S0, 3)

For example, the norm-like functions
where the basis functiong can be chosen, e.g., as ra-

—xP
dial basis functions [10], tensor—product splines or sub- N(x) =x (7)
sets thereof [17] or T-splines [39]. are associated with the weight functions

W(x) = px’~2. 8)

3 Geometric Fitting

For 1< p < 2, the weight functions are positive, but not
When fitting a curve/surface to given data, one minbounded. In the casp > 2 the weight functions are
mizes usually certain geometric distances to the givedunded but not positive (duetg0) = 0). Forp = 2 the
data pointg;. As the data exceed in general the degre@@ight function is both, positive and bounded. Of course
of freedom this is done via a least-squares approach.tiis special case reduces to the ugigapproximation.

the sequel we generalize this technique. As another example, consider the norm-like function
1 awr 2
3.1 The generalized fitting problem and N0 =1—exp=x) ©)
norm-like functions with the weight function
In many application a least-squares approach is not ap- W(X) = 2exp—x?). (10)

propriate as it assumes implicitly that the measured er-
rors follow a Gaussian distribution. However, in the preff-can be used as an alternative to th@orm. The weight
ence of erroneous data this assumption cannot be justiffeehction is positive and bounded.



3.2 A Gauss—Newton-type method During the iteration, the Hessian has to be evaluated in
each single step. Especially in the presence of a high
Hlumber of data points this might be computationally ex-
\%%nsive. Moreover, if the functioR is only €1, no sec-

ffid order derivatives are available and the Hessian does
not exist. For this reason we do not use the exact Hes-
sian, but apply some simplifications to (13) in order to

In the following we apply the widely used Gauss—Newt
approach to the non-linear problem (4). In a first step
provide the gradient and the Hessian of the objective fu
tion, where we use the abbreviati&®}; = pj — cj(s) for
the residual vectors,

M T obtain an approximate version. More precisely, we adopt
OF = Z N'(IR; ||)—J_DSR,- the paradigm of Gauss—Newton methods and omit the first
=1 IR;] and the last part of the expansion in (13),
M RT
= 5 W(||Rj|)|IR|| = Os(—c;j(s)). M T
J; (IR;IDII JHHRJH s(—¢i(9)) =S w Oty Osfs (14)
& I18x S]] DO s
The gradient-0scj(s) can be computed from the condi-
tion fs(cj(s)) = 0, which implies The following result justifies the choice of this simplifica-

tion.

(Osfs)(cj(s)) + (Ox fs)(cj(s)) Oscj(s) = 0. (11) _
Proposition 1. Assume thatis a minimizer of (4) such
For any regular surface point, i.elxfs(cj(s)) # 0, the thatfs(p;) = 0 and||Ox fs(pj)|| > O for all data pointp;.
residualR; is parallel to the gradieriiy fs(cj(s)): Lets— fs(X) € €2(R™ R) be bounded for ak € Q  R?
andw be a positive and bounded weight function. Then
M = sign(Cx f (C(S))R)R_JT (12)
[0k fs(cj(8)) VIR limHr = He.

s—S
Combining (11) and (12) yields Proof: First we note that the boundednessgik) and

. 2 . . . . . .
RT Osfs(ci(s)) its < continuity implies that the derivatives d§(x) up

R—j_DS(—CJ (s) = Wsign(mx fs(cj(s))Rj) to second order are bounded as well. Now we consider
IR; 15 fs(cj () the first and the third term in (13) separately. For the first
which gives the gradient of the objective function term we obtain
M _ Osfd  Osf || Osfsl|?
Osfs(ci(9) T < IRyl o2 < IRy
OF = § wj||Rj||-—=—————=5signx fs(c;(s))R;). 1= 10T = ) 2"
J; iRl 0TS ()] gn(Ox fs(cj())R;) [Dx fs]l 0x | [Ty fs|

ConsequentlyT; vanishes in the limit a§R;|| — O for
s— ssincew is bounded ang/Ux fs(p;)|| > 0. The third
ferm can be bounded by

where we used the abbreviation = w(||R;||). As a fur-
ther simplification we omit the arguments in the followin
discussion. However, we keep in mind tHaand its gra-

dients are evaluated at the surface poats). Thus the | 0sDs | B T
Hessian is T3 < W [|R; H(m +1|0sfs || A [ OsOx fs])-
_ T
He = DO(0F ) (13) Again, this part vanishes due to the boundedness of all in-

3 WRj| Osf  Osfs w Osfy  Osfs  volved derivatives anfily fs|| > 0. The remaining second
- J; VW Ocfs| 110x ] ' |Oxfs|l |Oxfsl|  term coincides with the approximate Hessigh O

T From this result we can conclude immediately - similar to
OsOsfs _ Osfs Dx fsUslx fs) the well known Gauss—Newton method f8rapproxima-

(| Ox sl [[0x fs|® tion - a quadratic convergence rate in the limit.

+wj[[Rj|(



Summing up, we obtain indeed a generalized Gauss-the normal velocity of a regular surface point. Hence
Newton—type method with the desired properties if wee can rewrite (17) as the least-squares problem
built the linear system

wi((R; —v“)Tnj)2—>m_sin. (18)

M=

HiAs+OFT =0 (15)
J

which leads to _ . : N .
This reformulation furnishes following interpretation:

M T
> W ”DDSf: i Es];SHAS (16) Each data point attracts its associated closest
=1 X SIS point on the surface with a certain velocity.

M Osfd . In the normal direction of the surface, the ve-
+ > WillRyl| 1O fo] sign(Lx fsR;) = O. locity shall be such that it has the same magni-
=t tude as the distance to the data point. The dif-

As all functions and gradients are evaluated at points of ference between the actual and the imposed ve-

the surface, we will refer to (16) as trearface—based locity is minimized in the least-squares sense,

Gauss-Newton-type methémt minimizing general func- where each point is weighted with the corre-

tionsN = N(||Rj||) of the residuals in the case of implic- ~ Sponding value of the weight functiar.

itly defined surfaces. . . . P
This geometric interpretation of the geometric fitting is

. ) ) . visualized in Fig. 1, top. See also [2, 4] for a more abstract
3.3 Continuous version and its geometrical giscussion of this type of shape evolutions for the case of

interpretation least-square approximation (i.8l(x) = x?).

In this section we propose an interpretation of the Gauss-

Newton method that shall provide additional geometricdl4 Remarks on closest point computation
insight in the fitting process. Recall that in each step of ) ) o

the approximation described in the last section the initﬂﬂte that for the d|rec_t distance minimization the closest
surface moves closer to the target points. This movemBRiNt of €ach data point has to be computed. See [1] for
shall now be interpreted as discrete steps of a continu§f@bust method for closest point computation. Although
evolution process. the computation of a single closest point requires only the

In fact, equation (16) can be seen as the minimum caplution of a non-linear system of two or three unknowns,
dition of (where we used (12)): the overall effort may be quite substantial.

First, the systems are in general non-linear and can not
M 06T Oof T 2 be sol_ved _directly. Second, the n_umberof data points can
Z W, (Rj 4+ —X’s S’S 's> X's — min, pe quite high, and t_he cI_osest points need to be computed
& IOk Fsll IBxfsll /1l O]l S in each step of the iterative method.
(17) Consequently, it is desirable to avoid the computation
of closest points as will be shown in the next section.

where we simply replaced the discrete updaseby its
continuous counter past ] o
Note that S 4 Algebraic Fitting
X's
nj=-——
J I0x fs| This method relies on the following observation. By def-
is the unit normal of a regular point on the surface and tHation. a pointx lies on an implicitly defined surface if
its algebraic distance to the surface is zero, fg€x) = 0.
n_ Ok fg . Ox fg For points in the vicinity of the surface the function value

T [Oxfs|2 fs=— [Dx fs||2 Osfss, is expected to be close to zero.



surface-based evolution
Pj
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Figure 1: Velocities for surface-based evolution

are imposed at closest points on surface (top). Ve-
locities for point-based evolution are imposed at
data points (bottom).

mate gradient,

M fsOsf
DF* stislis
2 M ot

The Hessian of (20) is

He = 0(0OF*T) =
=Y w;f —
PR N A A N AT
Dsf Dsfs
+ W;
g AN

VV,- stsfs (S|gr(fs)Dsfs |fs|Dxst5Dst>
IO )2\ 10k 1B fsl|*

Again, we consider a simplified version of the exact Hes-

4.1 The generalized fitting problem for S

: Osf
Sampson distances =2

JIIDxsz [[0x fs

Taubin [34] proposed to use the Sampson distance [28
an approximation to the exact geometric distance. It is the
gradient—weighted algebraic error,

roposmon 2. Assume thatis a minimizer of(20) such
that fs(pj) = 0 and ||Oxfs(pj)|| > 0. Lets— fs(x) €
¢?(R™ R) be bounded for alk € Q ¢ R? and w be a

~fs(pj)] positive and bounded weight function. Then
ds= ="~ (29

IREXICHIN

With this we obtain the objective function

|im7H|: = Hé.
$—S

The proof is similar to the one of Proposition 1.
As for the geometric fitting we obtain a linear system
(20) forthe update vectahs:

M

F=9Y N( _fsPi)l — min.

2N 0oy
Mo Osfd Dsfs fsOsfs

As an important observation we note that in contrast to the Z Ot | Ox fs|| ]| Ox fs|| As+ Z j [ESA
direct distance minimization, the gradients and functions =
are now evaluated at the data points. However, the difference to the direct method is signifi-
cant. No closest point computation is needed since all
functions and derivatives are evaluated at the data points.
Therefore we call (21pata—based Gauss-Newton-type
In the following discussion we skip again the argumentsethod
(keeping the dependency on the data pomtin mind). Fig. 2 shows a first example of a data—based Gauss—
The gradient of (20) is Newton-type method fof, approximation.

=0 (21)

4.2 A Gauss—Newton-type method

S|gn(fs)DsfS | fs|Ox fsOsOx fs
[ Ox fs| Ok sl

OF — Z NI ( ) 4.3 Continuous version and geometric in-
terpretation

The second term vanishes for zero-residual problerSémilar to the surface-based Gauss-Newton-type method
Omitting it and using\’(x) = xw(x) yields an approxi- we interpret also the data-based method as an evolution



Figure 2: Initial value (left), an intermediate step (cehtnd the final result (right) of a data—based Gauss—Newton—
type method (or equivalently: of an evolution process)feapproximation.

with a suitable speed function. Again, it can easily b
verified that

M ((lljfofS I DXfSDsfs.) DXfJ >2_)min
S

.
2.\ otz T 5 Rl 2 ot

is the minimum condition of (21) where we replaced aga
As by s. This furnishes the following geometric interpre
tation, which is different from the surface—based case:

Each data point imposes a velocity on the level

set of the surfaces passing through it. In the  Figure 3: 180 points from a parametric surface and ran-
normal direction of the level set, the VE|OCity dom|y generated error. Data—based evo|ution@ap-
shall be equal to the Sampson distance of the proximation with distance field constraint (left), see text
pointto the surface. The difference betweenthe  for details. Taubin's method (right) is not able to deal with

actual and the imposed velocity is minimized  gata, due to the incorrectly chosen degree of the algebraic
in the least-squares sense, where each point is gyrface.

weighted with the corresponding value of the
weight functiorw;.

This geometric interpretation of the algebraic fitting is vinethod may be needed in order to solve the generalized

sualized in Fig. 1, bottom. eigenvalue problem). On the one hand this seems to be

an advantage, since no iterations and therefore no con-

5 Discussion and examples vergence analysis is needed. On the other hand, once the
P result is computed, it can no longer be influenced. lter-

ative methods provide the flexibility to adjust certain pa-

We compare direct methpds and iterative (.evomt'opémeters—such as regularization parameters — during the
based) methods and describe the use of two different rgg—p roximation

ularization techniques. Next we analyze the difference
between surface—based and data—based methods. Final#yn example —which compares Taubin’s method and an
we address the use of general norm-like functions. /2 approximation by evolution — is shown in Fig. 3. The

latter technique gives the correct result, while Taubin’s
fit encounters some problems. The interpretation of an
iteration as discrete steps of a continuous evolution sffer
Many direct techniques, such as Taubin’s method [34lven more flexibility. This is especially true for the choice

provide the result after a single step (though an iteratigéthe regularization parameters.

5.1 Direct methods vs. iterative methods



5.2 Regularization discretize (22) by applying it to a number of poimisin

. - . .. thed in of int t. This leads t
An inherent problem of fitting with implicit © domain otinteres IS leadsto

curves/surfaces is that the solution is not unique as Z(EHDX]‘S(Xi)H+||Dxfs(xi)H_1)2_)min- (23)
all functions A f(x) with A € R\{0} possess the same T dt

zero contour (1). Consequently, suitable regularizatigf s retically, the distance field constraint can be imposed

term_s have to be incorporated in order to avoid thfé a very dense grid of points in the domain of interest.

amblguny. . . However, a unit gradient field exists only in some neigh-
A §|mple strategy is to constrain the .values of SO"frhood of the zero contour, bounded by the evolute of

coefficients, such as the constant term in the case of[ﬂlé curve or by the focal surfaces of the surface.

gebraic curves [25]. However, this approach constrainsgjnce this neighborhood is unknown we use the follow-

the space of solutions as it prevents the curve from paﬁﬁj strategy. We sample a number of points on a regular

ing through the ori_gin._ Instead_, one ShO_U|d prefer daldrig and choose those points that are close to the curve
dependent regularization functionals as in [34]. Also,

o . L . ' or surface. In order to avoid the time-consuming dis-
additional normal vector information is available (that i, .o computation we allow all points that have a small

if the given data are orientable in the sense that each p@ilf,hson distance or alternatively, a small absolute func-
can be equipped with a normal vector), then one may URSh value

this information to define additional terms in the objec- Alternatively, one may also impose a side condition

tive function that measure the deviation between the givghijar to the one proposed in [34]. There it was required

normals and the real ones, [17]. that the average norm of the gradients in the data points

In addition to these constraints that shall mainly eQp) pe equal to 1. In our setting this idea can be realized
sure a unique solution to the optimization problem, on

may also want to influence the shape of the resulting " "
curve/surface. Especially algebraic surfaces suffer of- < d O, fe(x: O () — M2 — min. (24
ten from unwanted oscillations, which may produce un-(i; a1 sl .)||+i;|\ xfs(x)| = M) — min. (24)

wanted branches in the domain of interest. These can be . . . . .
avoided by adding regularization terms such as the trI]\IlPngte, that in contrast to the distance field constraint, this

plate energy, see [17] normalization term does not prevent the evolution from
In the seq’uel we di.scuss tidistance field constraint finding the exact solution. In fact it only rescales the

which was proposed in [39, 40]. As the underlying idegefm!ng equationfs. quever, (24) is only one single

, S bndition on the coefficients.

in each step, the level set function is to be pushed 16- . . - :
In the presence of additional singularities, e.g. if the

\év;gjdsdﬁ]gﬁ]r;egr%stance function. This can be acmevrﬁ?mber of degrees of freedom &f has been chosen too

large, one still needs the distance field constraint in order
d _ . . " :
Q/(&”DX]CS(X)' 1| Ocfs(X)] — 1)%dx — min (22) ;ooiv;foieigtir:i?ues such as additional branches in the
to the objective function. Here we refer to the continuo
version of the method, see Sections 3.3 and 4.3.

The interpretation of this regularization term is as foln order to ensure a robust convergence behaviour, the
lows. If the norm of the gradient in a point equals &tep size paramethlr< 1 has to be choosen carefully. Us-
then its time derivative is zero, hence it shall remain uimg the interpretation of an evolutioh,can be computed
changed. Otherwise the norm of the gradient is modifisdch that the poiniss(uj) do not move more than a certain
such that it gets closer to 1. Clearly this condition avoidisreshold. As a good strategy one may relate this maxi-
the zero solution for the level set function. mal movement to the size of the data set (eg. the diameter

Since the integration over the domain of interest mightf the bounding box). However, the step size should be
be complicated, we adopt the following approach. Welaxed to 1 in the limit to obtain fast convergence rates.

%3 Step size control



() (b) (© (d)

Figure 4: We consider a point cloud that consists of two mesfheres. As an initial value we choose a plane as
displayed in (a). During the evolution process ferapproximation of the Sampson distances, the surface nstche
first the outer part of the points (b). Simultaneously, a sddaranch of the surfaces emerges inside the outer sphere,
which fits itself to the inner points (c). Note that for visizakion purposes a part of the outer surface is clipped away.

initial position after 7 steps after 10 steps after 15 steps

Figure 5: Step wisé, approximation of 240 points sampled from a torus with addil random error.

5.4 Surface—-based vs. data—based methods As an obvious difference between the data—based and
) the surface—based evolution, no closest points are needed
As shown earlier, the Gauss-Newton approach to exggt the first technique. When considering the computa-
distance minimization led to the surface—based evolutighng| costs, this is a powerful argument to favor the ap-
process. On the other hand, the approximate distapggximate distance minimization. Moreover, this method
minimization (based on the Sampson distance) can bedgn handle a specific class of topology changes more eas-

terpreted as a data—based evolution process, see Fig. ﬁy as demonstrated in the next example which is shown
In the surface—based approach (top), the velocities (dtrig. 4.

ted arrows) are directly prescribed at the closest pointson the other hand, the surface—based technique acts di-

which lie on the surface. Thus the closest points — and X

: rectly on the true geometric distance errors, and not on an
consequently the curve/surfate= 0 — is pushed towards Lo
é)_prommatlon. Consequently, one may expect that the re-

the data points. The magnitude of the movement is Oaults are more reliable. The choice of the most appropriate

rived f_rom the Eucllde_an distance from a data point to S ethod depends on the application background.
associated closest point.

Using the data—based approach (bottom), the velocitie&0!lowing our experiences, the data-based method can
are applied to the data points. The geometric interpre?éa-al with such situations as shown in Fig. 4 better than t_h(_e
tion is now slightly different. We do not move the surfacedface-based approach. Using the latter method, the ini-
directly, butinstead the forces are applied to a certaiellef@! Surface converges in the beginning towards the outer
set surfacef = const. that passes through the data poiffPhere as expected. But then it does not stop at the bound-
The magnitude of the velocity is given by the Samps&Y _but is pu_IIed inside the point cloud as it is attracted be
distance from the data point to the surface. In the skeff§ inner points too.
these velocities are represented by the dashed arrows. The data—based method seems to be more appropriate



to deal with this kind of topology changes. However, thigector of residuals by a norm-like functidf(x). In par-
flexibility causes also problems, since unwanted branchiesilar, this norm-like function can be chosen as an ap-
may appear during the evolution. proximation of¢, or /,. Each choice provides certain
Summing up, for simple shapes the surface—based eadvantages, depending on the error distribution.
lution may be preferred since it is not so vulnerable to un-All methods can be equipped with two equivalent inter-
wanted topology changes. If one needs more flexibility pretations. One may either see them as discrete iterative
order to fit complicated shapes, the data—based evolutioathods, or as evolution processes, where the evolution
is more appropriate. But one has to use more rigorous refja shape is governed by a differential equation. The lat-
ularization techniques in order to guarantee a stable eter-framework allows to introduce additional constraints,
lution. such as the distance field constraint (see Section 5.1 and
The application of the data—based technique to spafiz®]) as well as range, volume and convexity constraints,
data is shown in Fig. 5. A point cloud sampled from see [11].
torus was approximated using thenorm. If the residuals are chosen to be the exact geometric dis-
tances from the data points to the surface, then one obtains
a weighted version of the evolution method introduced by
[5], but now for the case of implicitly defined curves and
surfaces. In this setting the evolution is obtained by as-

Finally we demonstrate the advantages of general noif#ning to certain surface points a given velocity. The sur-
like functions. We present a comparison of an approf@ce points are simply the closest points on the curve and
imate ¢, an ¢,, and an approximaté, fit, see Fig. 6. the velocities are obtained from the distances from these
While the first one uses again the weight function whidhints to their associated data points. This technique has
is obtained from (9), the last one usgsapproximation been calle_d thelirectapproach.
for a relatively large value op. Alternatively, one can replace the exact geometric dis-
Starting from the initial position shown in the top leffances by some approximate distance. When choosing the
corner, we obtain three different approximations. THeamMpson distance, the obtained Gauss-Newton-type tech-
norms of the residual vectors are shown in the three plg{§ue yields again a method that can be interpreted as an
on the right—hand side. One may clearly see that the gyolutlon. But in contrast to the previous method the ve-
proximatel., approximation produces the smallest maxiocities are assigned at the data points, and the method has
mum distance error (0.26 vs. 0.46 and 0.49 foréhand been called theata—basedne. .
the approximaté; approximation). Clearly, the latter method does not need closest point
Fig. 7 shows the same effect for spatial data, sampfe@mputations, which is an advantage. On the other hand,
from a hyperboloid of revolution. Again one can see tH¥1€ may feel more comfortable with the direct method, as
approximations obtained with different norm-like funct works with the real distances, and not with approxima-
tions along with the different residuals of the 141 dat#ns. . .
points. The aim of this paper was to analyze the different meth-
Summing up, by using the various approximatio?ﬂs from a theoretical point of view, and to illustrate the
methods, different assumptions or experiences concdfifory by a few simple but representative examples. Fu-

ing the error distribution can be taken into account. ture work may be devoted to the practical exploitation of
these observations in a framework for 3D object recon-

struction, similar to the results in [40].
6 Conclusion Currently, our implementation - which is based on al-
gebraic surfaces (i.e. zero sets of polynomials)- is lichite
We investigated several methods for fitting implicitly deto relatively small data sets, due to the global support of
fined surfaces to given point data. More precisely, vikke basis functions.
generalized the usual Gauss-Newton technique for leastin order to deal with real-world scattered data sets, the
squares approximation by replacing thenorm of the methods presented in this paper should be combined with

5.5 Robust fitting via general norm-like
functions
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