The Visual Computer manuscript No.
(will be inserted by the editor)

Young In Yeo - Tianyun Ni - Ashish Myles - Vineet Goe

| - Jorg Peters

Parallel Smoothing of Quad Meshes

the date of receipt and acceptance should be inserted later

Abstract For use in real-time applications, we present a fast
algorithm for converting a quad mesh to a smooth, piece-
wise polynomial surface on the Graphics Processing Unit
(GPU). The surface has well-defined normals everywhere
and closely mimics the shape of Catmull-Clark subdivision

surfaces. It consists of bi-cubic splines wherever possibl

and a new class of patcheg-patches- where a vertex has

avalence different from 4. The algorithm fits well into paral

lel streams so that meshes with 12,000 input quads, of wh

60% have one or more non-4-valent vertices, are converted,

evaluated and rendered withx® resolution per quad at 50

frames per second. The GPU computations are ordered so

that evaluation avoids pixel dropout.

Keywords subdivision- GPU - smooth surfacequadrilat-
eral mesh

1 Introduction and Contribution

Quad meshes.e. meshes consisting of quadrilateral facets,

ich

Fig. 1 GPU smoothed quad meshes with displacement mapping.

naturally model the flow of (parallel) feature lines and are

therefore common in modeling for animation. Any polyh

eElg. 2 Patches from ordinary quads (light) and extraordinary quad

dral mesh can be converted into a quad mesh by one s(t%apk)'

of Catmull-Clark subdivision [3]. But preferably, a desgn

creates the mesh as a quad mesh so that no global refine-

ment is necessarggmoottsurfaces are needed, for example,

For real-time applications such as gaming, interactive

as the base for displacement mapping in the surface nor@gimation, simulation and morphing, it is convenient to of-

direction [8] (Fig 1).

Y. Yeo
University of Florida
E-mail: yiyeo@cise.ufl.edu

T.Ni
University of Florida

A. Myles
University of Florida

V. Goel
Advanced Micro Devices

J. Peters
University of Florida

fload smoothing and rendering to the Graphics Processing
Unit (GPU). In particular, when morphing is implemented
on the GPU, it is inefficient to send large data streams on
a round trip to the CPU and back. Current and impending
GPU configurations favor short explicit surface definitions
as derived below, over recursively defined surfaces.

For the following GPU-based surface construction, we
distinguish two types of quads: ordinary and extraordinary
A quad isordinary if all four vertices have 4 neighbors.
Such a facet will be converted into a degree 3 by 3 patch in
tensor-product Bernstein-Bézier (Bézier) form by thenst
dard B-spline to Bézier conversion rules [4]. Thereforg; a
two adjacent patches derived from ordinary quads will join

2 Young In Yeo et al.

C2. The interesting aspect of this paper is the conversionarid Bunnell’simplementation is that we decouple mesh con-
the extraordinaryquads, i.e. quads having at least one, anersion from surface evaluation and therefore do not have
possibly up to four, vertices of valence# 4. We present a the primitive explosion before the second rendering pass.
new algorithm for converting both types of quads on the flyloreover, we place conversion early in the pipeline so that

so that the pixel shader is freed for additional tasks.
1. every ordinary quad is converted into a bicubic patch ifree alternative smoothing strategies mimic CatmulHCla
tensor-product Bézier form, Figure 3(b); subdivision by generating a finite number of bicubic patches

2. every extraordinary quad is converted into a composffé&CM [14,15] generates NURBS output that could be ren-

patch (shoric-patch) with cubic boundary and defineddered, for example by the GPU algorithm of Guthe et al. [6].
by 24 coefficients, Figure 3(c); But this has not been implemented to our knowledge.

3. the surface is by default smooth everywhere (Lemma 1); pN-quads [16] are a variant of the three-sided patches
4. the Shape follows that of Catmull-Clark SUbdiViSion; ublished in Vlachos et al. [22] For each quad, one bicu-
5. conversion andlevaluation can be mapped to the GPLE;@ ‘geometry patch’ and one biquadratic ‘normal patch’
render at very high frame rates (at least an order of Magte generated. Adjacent geometry patches@Sialong the
nitude faster than for example [2,19] on current hargdges and match the prescribed position P and normal N at
ware). each vertex. The separately computed normal patches also
join continuously and interpolate the prescribed normals N
at the vertices. Since the lighting is based on the contin-
uous normal field defined by the normal patches, an im-
pression of smoothness is conveyed; only the silhouette be-
trays the lack of smoothness in the actual geometry defined
by the geometry patch. The shape of surfaces can be made
more rounded by taking as input the limit points and nor-
e S o o mals of Catmull-Clark (PN-lim in Figure 19). The method of
(a) quad neighborhood (b) bicubic (c) c-patch Loop and Schaefer [10] is very similar to PN-quads. It also
Fig. 3 (a) A quad neighborhood defining a surface piece. (b) A bicub@€nerates one bicubic patch per quad following the shape
patch with 4x 4 control points marked as This patch is the output of Catmull-Clark surfaces. Since these bicubic patches typ
if;thci S?I:ﬁg iSa%fdsineart);hgpddnl;?ed;g daett;:miréifﬁggdShagioOgtgl(C ically do not join smoothly, Loop and Schaefer compute
Bointsldisplg;ed Ias.)((For ar:alys)?s, it cgn altclasrnatilvely lt)vg representeg\g additional pat_ches whose cross product _apprOXImates
as fourC!-connected triangular pieces of degree 4 with degree 3 ou normal _Of the bicubic pa_ltCh' AS p0|.nted outin [22], these
boundaries identical to the bicubic patch boundaries.) trompe ['oeils represent a simple solution when true smooth
ness is not needed. In a comparison to our method, we show
in Section 5 that the lack of smoothness in [10] can resultin
visible artifacts.

The quincunx split of the quad by the c-patch reminds of
Zwart-Powell element [23, 18], simplest subdivision][1
and 4-8 subdivision [21] due to the underlying box-spline

A number of techniques exist to smooth out quad mesh(ej'sr.ecuons'

Catmull-Clark subdivision [3] is an accepted standard, but
does not easily port to the GPU. Evaluation using Stam’s
approach [20] is too complex for large meshes on the GPU.
The methods in [2,19, 1] require separated quad meshes, i.e.
quad meshes such that each quad has at most one point witt) .

valencen # 4. To turn quad meshes into separated qugdlH1e Conversion Algorithm

meshes usually means applying at least one Catmull-Clark

subdivision step on the CPU and four-fold data transfer kbere we give the algorithm for converting the quad mesh
the GPU. In more detail, Shiue [19] implements recursivato coefficients that define a smooth surface of low degree.
Catmull-Clark subdivision using several passes via thelpiXAnalysis of the properties of this new surface type and the
shader, using textures for storage and spiral-enumeragetd rmplementation of the algorithm on the GPU follow in the
fragments. Bolz [1] tabulates the subdivision functions upext sections. Essentially, the algorithm consists of aamp

to a given density and linearly combines them in the GPlihg new points near a vertex using Table 1, and, for each ex-
Bunnell [2] provides code for adaptive refinement. Even gtbtaordinary quad, additional points according to Tableg2(s
this code was optimized for an earlier generation GPUSs, tikigjure 4). In Section 3, we will verify that these new points
implementation adaptively renders the Frog (Figure 2) oefine a smooth surface and in Section 4, we show how the
real-time on current hardware (See Section 5 for a compaso stages naturally map to the vertex shader and geometry
ison with our approach). The main difference between oshader stage, respectively, of the current GPU pipeline.

1.1 Some Alternative Mesh Smoothing Techniques on th%he
GPU

Parallel Smoothing of Quad Meshes 3

</><><\>) <><\ trol points invariant as; = e;:

2
XX </\\>> forn=4, tj=v+_(ej—eu2)=v+(ej—Vv)=¢. (1)
/ N

020

S 22 micubi
2.2 Bi-cubic patches and c-patches
AVAWANEEE P ’
vertex neighborhood! Table 4 c-patch interior: Table »In the second stage, we gather vertex neighborhoods to con-
L struct patches on quads. Combining information from four
Fig. 4 Vertex neighborhoods with coefficients and€) and c-patch VETtex neighborhoods as shown in Figure 6, we can populate
interiors with coefficientdh, ,, by, b ;. atensor-product patahof degree 3 by 3 in Bernstein-Bézier

(Bézier) form [4]:

o(uv) = ki ;gm (§)ua- s (Fva-ve

The patch is defined by its 16 coefficientsoamtrol points
Oke- If the quad is ordinary, the formulas of Table 1 make
this patch the Bézier representation of a bicubic spline in
B-spline form. For example, in the notation of Figure 6,
(Gko)k=o..3 = (VO,t3,t1,v1). If the quad is extraordinary, we

P2n-1 t .
Fig. 5 Smoothing the vertex neighborhood according to Table 1. The \3 S / bi-2= pi+2
center pointp,, its direct neighborg,; and diagonal neighborngyj 1 F b1 pi+1
form a vertex neighborhood. o2 12 22 % 004

if extraordinary

g
o 1121 3
fi = (4P« +2p2j +2p2j12 + P2j+1)/9 00 10 20 30
g = (fj+fj_1)/2 / \
= 1 2 n-1 ’ ’ 0
v n(n+5) (n P+ ZJ:Q (4p21 + p2J+1)> e te f 1 f 1 & 400 310 220 130 040
= vk yNicos? e, j=0,1. W et et v

Table 1 Computing control points, e, f andt, the projection of Fig. 6 Patch construction. On the left, the indices of the contodhis
e, at a vertex of valencen from the mesh pointsp; of a ver- of g are shown. Four vertex neighborhoods with verti¢esach con-
tex neighborhood; the subscripts are moduio By default, g, := tribute one sector to assemble the 4 coefficients of the Bézier patch

/ 1) /16. th i i | {9, for examplegoo = \°, g10 = €J, 911 = f°, ga0 = V!, g31 = € (we
(C”+5+ (cn+9)(en+)>/ 6, the subdominant eigenvalue o use superscripts to indicate vertices; see also Figure®h®right,

Catmull-Clark subdivision. the same four sectors are used to determine a c-patch if thexlyimg
quad is extraordinaryNote that only a subset of the coefficients of the
four triangular pieces bis actually computed to define the c-patch.

. . The full set of coefficients displayed here is only used td the
2.1 Computing the Vertex Neighborhood construction. Py Y v

In the first stage, we focus on a vertex neighborhood. l'JAse the bicubic patch to outline the shape as we replace it
vertex neighborhoodonsists of a mesh poimt, and mesh by a c-patch (Fi pure 3(c)). A c-patch hag the riaht dg rees
pointspy, k=0,...,2n—1 of all quads surrounding. (Fig- y P (Fig ©)). b g 9

ure 5). A vertexv computed according to Table 1 is the Iimi?f freedom to cheaply and locally construct a smooth sur-

point of Catmull-Clark subdivision as explained, for examf"ce'The c-patchis defined by the 46 c-coefficients con-

ple, in [7]. Forn = 4, this choice is the limit of bicubic structed in Tables 1 and 2:

subdivision, i.e. B-spline evaluation. The rules fgrand VLt bhy g, by, blgs, i =0,1,2,3.

f; are the standard rules for converting a uniform bicubic

tensor-product B-spline to its Bernstein-Bézier repnése By construction, the c-patch and an adjacent tensor-ptoduc
tion of degree 3 by 3 [4]. The pointg are a projection of patchg haveidentical boundary curves of degreevdhere

gj into a common tangent plane (see e.g. [5]). The defatiey meet, an important consideration for preventing gaps i

scale factorgy, is the subdominant eigenvalue of Catmullthe final GPU implementation.

Clark subdivision. We note that for = 4, ej;2> = 2v — g, Alternatively, we can view one c-patch as the union of

andogy = 1/2 so that the projection leaves the tangent cofeur polynomial patche§', i = 0,1,2,3 of total degree4.

4 Young In Yeo et al.

by, = bl 138 () + 175”1(%,\;) To derive the formulas fobi211
+4_I_3|+_1(fi,eio) and its symmetric counterpart
R bl ,, note that the formulas must
bly, = bt L i) 4 L (i guaranteei a smooth transition
g (= &) between b' and its neighbor
&+ patch on an adjacent quad, re-
b, = g +3(b,]11+b1211 bl;é bl]211)/16 gardless whether the adjacent
+ (bhy + b1 — boyd — b,1)/16 quad is ordinary or extraordi-

nal’y. That iS, the fOI’mU|aS areFig_ 8 Dark lines cover the
derived to satisfisimultaneously control points involved in

ch See also Fi 9 and 10. He 4 two types of smoothness con-the C? constraints (5). The
ac-patc ee also Figures Y an € SZCOS— S _sm T an straints (See Section 3) By Con_pomts on dashed lines are

superscripts are modulo 4. By defaugt, := (Z.:o\" +3(é0+e' + trast bi112 is not pinned down implied by averaging.
9f') /64, the central point of the ordinary patch. by continuity constraints. We

could choose eachy,, arbitrar-

ily without changing the formal smoothness of the resulting
surface. However, we opt for increased smoothness at the
center of the c-patch and additionally use the freedom to
closely mimic the shape of Catmull-Clark subdivision sur-
faces, as we did earlier for vertices. First, we approxityate
satisfy fourC? constraints across the diagonal boundaries at
the central poinbgg4 by enforcing

Table 2 Formulas for the 4 3 interior control points that, together
with the vertex control pointg and the tangent control poirqs define

1 -10 07 [by b%1— bl —
0 1-10 b%lZ _ :_L b311— b1 — 0 (5)
0 0 1-1f bfy,| 2 |by;—byp—q|’
-10 0 1] (b}, b3, — b3 —0q
210 211 300 s i _ _
Fig. 7 The six basis functions of one sector of the c-patch. whereq:= 331 o(311—bi,). The perturbation byis nec-

essary, since the coefficient matrix of 88 constraints is
_ rank deficient. After perturbation, the system can be solved
A polynomial pieced' of total degree4 [4] has the Bézier with the last equation implied by the first three. We add the

form constraint that the averageldf; , matcheg. :=g(, 3), the
, : 41 center position of the bicubic patch. Now, we can solve for
bllu,uz) = 5 bymp— o U1U2(1 ur—w)™ (2) Db, i=0,1,2 3 to obtain the formula in Table 2.
k+(+m=4
k,¢,m>0

The 4x 6 c-coefficients imply the interior control points of3 Verifying Smoothness of the Surface
this representation (2) " continuity between the triangu-

lar pieces: forj =0,1,2,3 andi = 0,1, 2,3, In this technical section we formally verify the following
_ _ lemma. For the purpose of the proof, we view the c-patch
b3 j01tj = b'(,f3{j71+1 (b it b13 i)/2 (3) inits equivalent representation (2) as four Bézier patafe

total degree 4.

and the boundary control poi are implied by degree-
raising [4]: Y poirbgo P Y G898 | emma 1 Two adjacent polynomial pieces a and b defined

_ _ _ _ _ by the rules of Section 2 (Table 1, Table(2), (4)) meet at
bloo:=V, b= (V+3t5)/4, bhyo:=(lp+t"")/2, least
i130 - (Vi+1+ 3ti1+1)/4, '040 =Vt @ (|) Ci !f aandb corres_pond to two ordinary quads.
i) C-ifaand b are adjacent pieces of a c-patch;
Basis functions corresponding to the 24 c-coefficientsef @) C! if a and b correspond to two quads, exactly one of
c-patch can be read off by setting one c-coefficient to one which is ordinary;
and all others to zero and then applying (3) and (4) to obt@ify with tangent continuity if a and b correspond to two dif-
the representation (2). Fig. 7 shows the six basis functions ferent extraordinary quads.
of one sector. Two pairs are symmetric.
Proof (i) If a andb are bicubic patches corresponding to
ordinary quads, they are part of a bicubic spline with uni-
2.3 Interior c-patch-coefficients form knots and therefore me@t. (ii) If aandb are adjacent
pieces of a c-patch then Equations (3) enf@&eontinuity.

Parallel Smoothing of Quad Meshes 5

For the remaining cases, lete a triangular piece. Let9)
u the parameter corresponding to the quad edge between, 0
baoo = \V°, whereu = 0 and the valence isy andbgag = V! 3(60 —V°) +2(ef — &)
whereu = 1 and the valence is; (see Figures 9 for (iii) 3
and 10 for case (iv)). By construction, the common boun%— el—e) - _fO-€l
ary b(u,0) :Voa(g, u) is a curve of degree 3 with Bézier con2" 40211~ Ds10) = 8(—7— + —o—+3—2—).
trol points (V2. t9,t%, v!) so that bicubic patches on ordinar

B (V510 v) P yagn, comparing the first two Bézier coefficient®gh(u, 0)

uads and triangular patches on extraordinary quads ma-f
d g P v and P,b(u,0) + 1a(0, u) yields equality and establish€s

and

up exactly. A

Denote byd;b the partial derivative ob along its first Continuity:
parameter — i.e. along the common boundary — andJby 3(e9 —\0) = 3(e2 4+ €9) — 60 —3(ed —\° 6
the partial derivative in its second variable. Sifxe,0) = \(i,_l (o +e) (& —v) (6)
a(0,u), we havedib(u,0) = d,a(0, u). The partial derivative 1b(0,0) 20,b(0,0) 013(0,0)

in the first variable of s, similarly,d,a. We will verify that (&0 \0y 1 2rel — g0y — 2(el — Q) 4 (e2 — \°) + 3(f°0 — &2
the following conditions implying tangent continuity hold (&)2 =) <3<lfo eO)O) (&)+ 2,),)

if one quad is ordinary (case (iii)),
01b(u,0) = 29,b(u, 0) + 01a(0, u); (6)
if both quads are extraordinary (case (iv)),
((1—u)Ao+UA1)d1b(u,0) = d>b(u,0) + d1a(0,u), (7)

whereg:=1+c% Ay :=1-c!, andc := cos(i—n).
|

Both equations, (6) and (7), equate vector-valued polyno-
mials of degree 3 since we writhb(u,0) in degree-raised
form. The equations hold if and only if all corresponding
Bézier coefficients are equal on both sides. Off hand, this
means checking four vector-valued equations for each of {@y- 10 G! transition between two triangular patches.
and (7). However, in both cases, the setup is symmetric with
respect to reversal of the direction in which the boundary T equations for (7) are similar, except that we need to

b(u,0) is traversed. That means, we need only check the ﬁFéblaceej byt; and keep in mind that, by definition,
two equations (6’) and (6”) of (6) and the first two equations

(7") and (7”) of (7). We verify these equations by in‘s,ertingtr?rl —VO) + (12 —\0) = 201§ —\O).
the formulas of Tables 1 and 2.

0
tno—l

Hence, for example,
dzb(o, 0) -+ dla(o, 0) = 4(b301 - V0 +azo1— VO)

= 24- 2013 —WP).

The first of the four coefficient equations of (7) then sim-
plifies to

0y (+0
Fig. 9 C! transition between a triangular patbH(top) and a bicubic 3(1+c)(to— VO) = 4(bgo1+ago1 — 2V0)
patcha (botton).

t9+19 £t 40
:3(120—V0+1 5 O—VO)
To verify (6), the key observation is thag = n; = 4 if one _ 1,040 0_ /
quad is ordinary. Hence? = ¢! = 0 ands® = s = 1 (cf. 352t V) +25-v). (7)
P .
Table 2) andj = e'j. Therefore, for example (cf. Figure 9) Noting that terms fo—eg)/(8(50+sl)) in the expansions of
3 98+ 0 bo11 andap11 cancel, the second coefficient equation is
20,b(0,0) = 2- 4(bgp— W) =8> (22— _\0
2b(0.0) O(30;) =873) BAo(tF —19) + 3A1 (13 — V) = 12(bp11 + @11 — 2ba10)
—3(e3+€}) -6, 12204 o 1220 o o
o == (t1 to)+78 (to—Vv°). (77)
where the factoé stems from raising the degree from 3 to

4; and the second Bézier coefficientdyb(u,0) (in degree- It is easy to read off that the equalities hold. So the claim of
raised form) and of &b(u,0) are respectively (cf. Figure smoothness is verified.

6 Young In Yeo et al.

4 GPU Implementation
Input Assembler
[rowsrema]
s 5%
P., n, o I
Vertex Shader
v, tO'tlva O

We implemented our scheme in DirectX 10 using the vertex
shader to compute vertex neighborhoods according to Tabl
1 and the geometry shader primitiv@ngle with adjacency

to accumulate the coefficients of the bicubic patch or com-
pute a c-patch according to Table 2. We implemented con
version plus rendering in two variants: a 1-pass and a 2-pas
scheme. Bicubic and c-patch are implemented in separat
shaders.

Vi, tyi by, f

el
[}
w
o
<
o
[0}
K
@
-4
5
o
o
2
o
x
x
=
=
[¢]

T
. HH

[ryshader] H
HT

H

position, normal

Pixel Shader ‘

Input Assembler ~ l color

B 1]
3 + : Fig. 12 At present, the 1-pass conversion-and-rendering museplac
= P-,n, o i patch assembly and evaluation on the geometry shader.sThet ef-
P Jl Vertex Shaderl ficient.
0
W Vo toba Pass 1 conversion
= = VSTn p.,n, 0
o b Vi, toi td, fi P ; = VS Use texture lookup to retrieveyj, p2j+1
= SN e, Computev. gy, fj, to,t (Table 1)
F [Geometry Shader| ~— ®- VS Out V,to,t17f,—,j_:0..n—1
e GSn Vit fi=0.3
= l GS if ordinary quad
= &= s assembl@y, k,| = 0..3 (Figure 6)
® Coeffici t -IJ =P £ o =] else . . .

oefficients —— L o o 1 computeb, ;, by, b1, (Table 2)

GS Out if ordinary quad, stream ogj,k,1 = 0..3.
else stream ou), t, t, 054,055, by 55,
i 3

baool. tol, t,

; . : Gk
baq4t, Bez4t, b2t ’
s e T Pass 2 Evaluating Position and Normal
VSin (u,v)
VS if ordinary quad
: compute normal and position @i, v)
T by the tensored de Casteljau’s algorithm
(U, V) S8Ee else

) Compute the remaining Bézier control points (3)
Compute normal and position @t, v)
by de Casteljau’s algorithm adjusted to c-patches.

Input Assembler

Vertex Shader

VS Out position, normal
e PSIn position, normal
pasition, nermal PS compute color

PS Out color
Pixel Shader) -
Table 3 2-Pass conversion: VS=vertex shader, GS=geometry shader,

PS=pixel shader. VS Out of Pass 1 outpuifsoints f; for one vertex

color (hence the subscript) and GS In of Pass 1 retrieves fourpbintach
generated by a different vertex of the quad (hence the stijet)s

Fig. 11 2-pass implementation detailed in Table 3. The first pass con
verts, the second renders. Note that the geometry shadec@mbputes
at most 24 coefficients per patch and does not evaluate.

2injxa] Iayng ‘seoinosay

back large data sets after amplificatioRosition and nor-
mal are computed on the, v) domain[0..1]2 of the bicubic
The 2-pass implementatioconstructs the patches in theor of the c-patch (not on any triangular domains). Table 3
first pass using the vertex shader and the geometry shddgs the input, output and the computations of each pigelin
and evaluates positions and normals in the second pass. Beesge. Figure 11 illustrates this association of componati
1 streams out only the»4 6 coefficients of a c-patch. it doesand resources. Overall, the 2-pass implementation ha$ smal
not stream out the # (4'52) Bézier control points of the stream-out, short geometry shader code and minimal ampli-
equivalent triangular pieces. The data amplification necdigation on the geometry shader (see Appendix).
sary to evaluate takes place by instancirfg,&)-grid on the In the 1-pass implementatigrthe evaluation immedi-
vertex shader in theecond passThat is, wedo not stream ately follows conversion in the geometry shader, using the

Parallel Smoothing of Quad Meshes 7

geometry shader’s ability to amplify, i.e. output multipieint smoothing of quad meshes is an order of magnitude faster.
primitives for each facet (Figure 12). While a 1-pass impl€&sompared to [19], the speedup is even more dramatic. While
mentation sounds more efficient than a 2-pass implementae comparison is not among equals since both [19] and [2]
tion, DX10 limits data amplification in the geometry shadémplement recursive Catmull-Clark subdivision, it is neve
so that the maximal evaluation density i<8 per quad. theless fair to observe that the speedup is at least pagrtiall
Moreover, maximal amplification in the geometry shader sldue to our avoiding stream back after amplification (data ex-
the performance. The performance difference between ftlesion due to refinement).

two implementations is easily visible when comparing Ta-

bles 4 and 5, with the caveat that we did not spend much

time optimizing the clearly slower 1-pass approach. (a)
5 Results @

We compiled and executed the implementation on the lat

est graphics cards of both major vendors under DirectX1(% - s
and tested the performance for several industry-sized mod Geometry gg >)
els. Two surface models and models with displacement map distance = % \ /
ping are shown in Figure 2 and 1 respectively. Table 4 sum- - : 2
marizes the performance of the 2-pass algorithm for differ-

ent granularities of evaluation. The (rocket) Frog model, i o A\
particular, provides a challenge due to the large number o NorrTal - >
extraordinary patches. el

Mesh Frames per second

(verts,quads, eqs) N=5 9 17 33

Sword (140,138, 38%)| 965 965 965 703

Head (602,600, 100%)| 637 557 376 165

Frog (1308,1292,59%) 483 392 226 87
Table 4 Frames per second for some standard test meshes with e .
patch evaluated on a grid of sikéx N; eqs= percentage of extraor- 0% R
dinary quads. Sword and Frog are shown in Figure 2, Head ir€ig Geometry gy >] L £ B
12 of [12]. For the smallest object, Sword, at low resoluti@mdering distance g 3% - i}
rather than evaluation is the bottleneck. The measuremers made . % d, > 7 g S

on an NVidia GeForce 8800 GTX graphics card.

Mesh | Slower 1-pass implementatio
N=2 5 8

Sword | 389 96 43

Head 108 34 15

Frog 44 10 4

Table 5 Performance of the 1-pass implementation.

The Frog Party shown in Figure 18 currently renders ffigt:r‘fzrey |
50 fps for uniform evaluation of nine frogs for N=9, i.e. or
a 9x 9 grid. That is, the implementation converts nine time
1292 coarse input quads, of which 59% are extraordina
and renders nearly 1.5 million polygons 50 times per secot
Additionally, our method scales well to higher tessellatic
levels, since the patch creation time does not increase
larger evaluation grids. On the same hardware, we measured

) s ; ; PR Fig. 13 Comparison to Catmull-Clark. Position (distance) and nor-
Bunnell's efficientimplementation (distribution accomga mal (angle) difference to the limit surface of Catmull-&aubdivision

ing [2]) featuring the Sing|e_fr09 model, i-‘?- 1/9th of th‘?_or (leff) the scheme in [10] andight) the c-patch surface (see also Ta-
work of the Frog Party, running at 44 fps with three subdbie 5). Lighter shading means better match. The number opeoed

visions (equivalent to tessellation factor N=9). That i®G samples are (a) 24578, (b) 73730, (c) 73730.

Normal
angle

8 Young In Yeo et al.

Figure 13right, visualizes the approximation to a denselype recommendation for quad meshes, adjacent high-valent
refined Catmull-Clark mesh. Botieometriaistance, as per-vertices in the input model should be avoided (see the sin
cent of the local quad size, amdrmal distance, in degreesterms in the denominator of the formulas of Table 2). The
of variation, are measured. Large models and models witideo [13] (see screen shots in Figures 17, 15, 16, 18) illus-
a large percentage of regular quads appear visually indistirates real time displacement and animation.
guishable when rendered by subdivision or c-patch smooth-
ing. We therefore chose small, predictable models with many.
extraordinary input quads (and without displacement). T&-Discussion
ble 5 quantifies and summarizes these distances. Since we
have been asked to compare c-patch surfaces to the ndmoothing quad meshes on the GPU offers an alternative to
smooth approximation [10], Figure 13 and Table 5 juxtaposéghly refined facet representations transmitted to the GPU
the measurements. The more subtle effect of not creatigd is preferable for interactive graphics and integratiith
smooth surfaces is evident from Figure 14. complex morphing and displacement. The separation into
vertex and patch construction stages isolates the computa-
tion on arbitrary valences from the final patch construgtion

Average | Distance to Catmull-ClarK

@ (b © simplifying the vertex and geometry shaders. Moreover, the
[10] data transfer between passes in the 2-pass conversion is low
Position | 1.20 1.58 1.67 since only 4x 6 control points are intermittently generated.
Normal | 2.09 1.94 2.74 Since we only compute and evaluate in terms of the 24 c-
c-paich i i i ;
Position | 070 0.77 0.80 patch coefficients, the computation of the cubic boundaries
Normal | 1.48 164 1.77 shared by a bicubic and a c-patch is mathematically identi-

Table 6 Average deviation from the Catmull-Clark limit surface io-p cal. An explicit ‘ifstatement in the evaluation guaraate
sition (parametric distance scaled by local quad size) amchal (an- € €xact same ordering of computations since boundary co-

gle) for the examples in Fig. 13. efficients are only computed once, in the vertex shader, ac-
cording to Table 1. That is, there is no pixel drop out or gaps
in the rendered surface. The resulting surface is watertigh

We advertised a 2-pass scheme, since, as we argued, the
DX10 geometry shader is not well suited for data amplifi-
cation and evaluation after conversion. The 1-pass scheme
outlined in Section 4 may become more valuable with the
availability of a dedicated hardware tessellator [9]. Sach
tessellator will make amplification more efficient and sup-
port watertightadaptive tessellatiofwhich is why we only
discussed uniform tessellation in Section 4). Such a hard-
ware amplification will also benefit the 2-pass approach in
that the(u,v) domain tessellation, fed into the second pass
will be replaced by the amplification unit.

Acknowledgements This work benefited from CGAL's half-edge data
structure, and used Bay Raitt's Frog and the ZBrush Sworcenddis
work was supported by NSF CCF-0728797.

References

1. J. Bolz and P. Schroder. Rapid evaluation of CatmulHCsabdi-
vision surfaces. IWeb3D '02: Proceeding of the seventh interna-
tional conference on 3D Web technolpggages 11-17, New York,
NY, USA, 2002. ACM Press.

2. M. Bunnell. GPU Gems 2: Programming Techniques for High-

. ' . . Performance Graphics and General-Purpose Computaitbap-
Fig. 14 CY artifacts (top) of [10] at the base of the nostril and arch of ter 7. Adaptive T?assellation of Subdivigion Surrages with?— D

the eye (straight line)bptton) c— patchconstruction for comparison. placement Mapping. Addison-Wesley, Reading, MA, 2005.
3. E. Catmull and J. Clark. Recursively generated B-spluréases
)) o on arbitrary topological mesheSomputer Aided Desigri0:350—
Despite the lower total degree and inter@aljoin, the 355, 1978. _ _
visual appearance of c-patches is remarkably similar tb thg- G. Farin. Curves and Surfaces for Computer Aided Geometric

; ; ; ; ; Design: A Practical GuideAcademic Press, 1990.
of bicubic patches. In particular, the close-up in Figure 1%. C. G%nzalez and J. Peters. Localized hierarchy surfdogesp

illustrates our observation that c-patches do not creagesh — |n's.'s. J. Rossignac, edit?hCM Symposium on Interactive 3D
problems compared to a single bicubic patch. As is generally Graphics pages 7-15, 1999.

Parallel Smoothing of Quad Meshes

6.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.
20.
21.

22.

23.

. M. Lee.

M. Guthe, A. Balazs, and R. Klein. GPU-based trimming and
tessellation of NURBS and T-spline surfacdsCM Transactions
on Graphics 24(3):1016-1023, 2005.

. M. Halstead, M. Kass, and T. DeRose. Efficient, fair intdap

tion using Catmull-Clark surfacesProceedings of SIGGRAPH
93, pages 35-44, Aug 1993.

. A. Lee, H. Moreton, and H. Hoppe. Displaced subdivisior su ’

faces. In K. Akeley, editorSiggraph 2000, Computer Graphics
ProceedingsAnnual Conference Series, pages 85-94. ACM Pre
/ ACM SIGGRAPH / Addison Wesley Longman, 2000.

Xbox 360, 2006. http://download.microsoft.com/download
/d/3/0/d30d58cd-87a2-41d5-bb53-baf560aa2373/nexgenera-
tion_graphicsprogrammingon.xbox_.360.ppt.

C. Loop and S. Schaefer. Approximating Catmull-Clarxdsu-
sion surfaces with bicubic patcheS&CM Transactions on Graph-
ics, 27(1):1-11, 2008.

T. Ni, Y. Yeo, A. Myles, V. Goel, and J. Peters. Smooth aces
from 4-sided facets. Technical Report 2007-429, Dept CLBit;
versity of Florida, 2007.

T.Ni, Y. Yeo, A. Myles, V. Goel, and J. Peters. GPU smauglof
guad meshes. In M. Spagnuolo, D. Cohen-Or, and X. Gu, editors
IEEE International Conference on Shape Modeling and Apgplic
tions, June 4 - 6, 2008, Stony Brook University, Stony Brieky
York, USApages 3-10. ACM Press, 2008.

T. Ni, Y. Yeo, A. Myles, V. Goel, and J.
ters. GPU smoothing of quad meshes,
http://www.cise.ufl.edu/research/SurfLab/08smi.

J. Peters. Patching Catmull-Clark meshes. In K. Akaditor,
Siggraph 2000, Computer Graphics Proceedinysnual Confer-
ence Series, pages 255-258. ACM Press / ACM SIGGRAPH /
Addison Wesley Longman, 2000.

J. Peters. Modifications of PCCM. Technical Report 2001;
Dept CISE, University of Florida, 2001.

J. Peters. PN-quads. Technical Report 2008-421, D&t QIni-
versity of Florida, 2008.

J. Peters and U. Reif. The simplest subdivision scheme fo
smoothing polyhedraACM Trans. Graph.16(4):420-431, 1997.
M. Powell. Piecewise quadratic surface fitting for camtplot-
ting. In Software for Numerical Mathematicpages 253-271.
Academic Press, 1974.

L.-J. Shiue, I. Jones, and J. Peters. A realtime GPU wishzh
kernel. ACM Transactions on Graphic24(3):1010-1015, 2005.

J. Stam. Exact evaluation of Catmull-Clark subdivisarfaces at
arbitrary parameter values. 8iGGRAPH pages 395-404, 1998.
L. Velho and D. Zorin. 4—-8 subdivisio@omputer-Aided Geomet-
ric Design 18(5):397-427, 2001. Special Issue on Subdivision
Techniques.

A. Vlachos, J. Peters, C. Boyd, and J. L. Mitchell. Curizid
triangles. In2001, Symposium on Interactive 3D GraphiBs-
Annual Conference Series, pages 159-166. ACM Press, 2001.
P. Zwart. Multivariate splines with nondegenerate ipans.
SIAM Journal on Numerical Analysi$0(4):665-673, 1973.

Pe-
2008.

Appendix: Shader code

The HLSL code will be posted at the authors’ web site. The
code below has been edited for readability.

struct InputMeshVertex{
uint n BLENDINDICESO; // valence
uint index BLENDINDICES1 }; // 1-ring start
struct Sector { // one c-patch sector
float4 b112;
float4 b211, b121;
float4 b300, b210, b120;};
typedef Sector cPatch[4];// one c-patch 1

struct VertexOutput {

uint n BLENDINDICES1 ;
floatd v . SV_.POSITION;
float4 tO : TANGENTO;
float4 t1 . TANGENTO;
float4 f[MAX_VALENCE] POSITIONO ;

77 Vertex Shader

Next generation graphics programming oYertexOutput VertexBasedExtyPatchConstruction (
InputMeshVertex input,

uint vIiD

SV_VertexID)

VertexOutput vout;

float4 direct[MAX],
diag [MAX];

float4 vlLocation;

/1 direct neighbors
/I diagonal neighbors
/Il vertex position

[/l position (from vertex texture cache)
vLocation = float4 (gVertexLocation.Load/(
int3(viID, gAnimationFrame ,0)).xyz,1);

/I Set vertex to CatmuHClark limit
uint n = input.n;
uint index = input.index;
vout.v = vLocationnkn;
[unroll]
for (uint i = 0; i < n; ++i)
float ftmp = gRinglndex.Load(
int2 (index+ix2 , 0));
float4 vtmp = gVertexLocation.Load(
int3((uint)ftmp, gAnimationFrame ,0));
direct[i] = float4 (vtmp.xyz, 1);
ftmp = gRinglndex .Load(
int3 (index+ix2+1, 0));
vtmp = gVertexLocation.Load(
int3((uint)ftmp, gAnimationFrame ,0));
diag[i] = float4 (vtmp.xyz, 1);
vout.v += 4.0cdirect[i] + diag][i];

vout.v /= (nx(n+5));

I/l Face points

[unroll]
for (uint i = 0; i < n; ++i) {
uint im = (i+n-1) % n;

vout.f[i] = (4.0/9.0)xvout.v

+ (2.0/9.0x direct[im]
+ (1.0/9.0p(direct[i]+diag[im]);
}
/I Two tangents; cCos(n,i)=cos (¢(&PI/n)xi
vout.t0 = float4 (0.0, 0.0, 0.0, 0.0);
vout.tl = float4 (0.0, 0.0, 0.0, 0.0);
for (uint i = 0; i < n; ++i) {
uint ip = (i + 1) % n;
float4 e = 0.5 (vout.f[i]+vout.f[ip]);
vout.t0 += cCos(n,i}e;

vout.tl += cSin(n,iXe;

const float ¢ = cCos(n,1);
const float sigma =

(c+5+sqrt ((c+9¥%(c+1)))/16;
vout.t0 /= n x sigma;
vout.tl /= n x sigma;
vout.n = input.n;
return vout;

10 Young In Yeo et al.

/I Geometry Shader

[maxvertexcount (24)]
void FacetBasedExtyPatchConstruction(
triangleadj VertexOutput input[6],
inout PointStreamGSOUTPUT> Stream,
uint pID : SV_PrimitivelD)
{
cPatch pat;// c—patch coefficients
/I Load index offsets (packed in uint)
uint rot_packed = gOffsetData .Load/(-
int3(plD, 0, 0));
uint rot_off[4];
[unroll] // 4 bits encode each rotation)
for (uint i = 0; i < 4; ++i) :
rot_off[i] = (rot_packed>> (4xi)) & OxF;
{{mcr:grlr;ﬁ)ute b300, b210 and b120 Fig. 16 Real time displacement on the twisting Frog model [13].
for (uint k = 0; k< 4; ++k) {
const uint km = (k+4-1) % 4;
const uint n = input[k].n;
const uint off = rot.off[k];
const uint offm = (off+(n—1))%n;
pat[k].b300 = input[k].v;
pat[k].b210 = input[k].v
+ input[k]. tOxcCos(n, offm)
+ input[k].tlxcSin(n,offm);
pat[km].b120 = input[k].v
+ input[k].tOxcCos(n, off)
+ input[k].tlxcSin(n, off);
}
/I Compute b211, bl21 for each sector
(removed — see Table 2)
/I Compute b112 for each sector
[unroll]
for (uint k = 0; k< 4; ++k) {
const uint km = (k+3) % 4;
const uint km2 = (k+2) % 4;
const uint kp = (k+1) % 4;
const uint kp2 = (k+2) % 4;
pat[k].b112 = b004
+ (3.0/16.0) x (
pat[k].b211 + pat[k].b121
— pat[kp].b1l21— pat[km].b211)
+ (1.0/16.0) x (
pat[kp].b211 + pat[km].b121
— pat[kp2].b211— pat[km2].bl21);
}
/I Stream out the €patch control points
(removed — straightforward)
}

,\’ \
Fig. 18 Asynchronous animation of nine Frogs

[13].
Fig. 15 Real time displacement on the twisting Sword model. See [13]

Parallel Smoothing of Quad Meshes 11

Fig. 19 Comparison.(Input) quad mesh, (PN)-quad and (PN-lim) PN-Quad usingnQiiClark limit points and normals [16], (ACC) [10]
(c-patch) this paper, (CC) Catmull-Clark subdivision.

