
The Visual Computer manuscript No.
(will be inserted by the editor)

Young In Yeo · Tianyun Ni · Ashish Myles · Vineet Goel · Jörg Peters

Parallel Smoothing of Quad Meshes

the date of receipt and acceptance should be inserted later

Abstract For use in real-time applications, we present a fast
algorithm for converting a quad mesh to a smooth, piece-
wise polynomial surface on the Graphics Processing Unit
(GPU). The surface has well-defined normals everywhere
and closely mimics the shape of Catmull-Clark subdivision
surfaces. It consists of bi-cubic splines wherever possible,
and a new class of patches –c-patches– where a vertex has
a valence different from 4. The algorithm fits well into paral-
lel streams so that meshes with 12,000 input quads, of which
60% have one or more non-4-valent vertices, are converted,
evaluated and rendered with 9×9 resolution per quad at 50
frames per second. The GPU computations are ordered so
that evaluation avoids pixel dropout.

Keywords subdivision· GPU · smooth surface· quadrilat-
eral mesh

1 Introduction and Contribution

Quad meshes, i.e. meshes consisting of quadrilateral facets,
naturally model the flow of (parallel) feature lines and are
therefore common in modeling for animation. Any polyhe-
dral mesh can be converted into a quad mesh by one step
of Catmull-Clark subdivision [3]. But preferably, a designer
creates the mesh as a quad mesh so that no global refine-
ment is necessary.Smoothsurfaces are needed, for example,
as the base for displacement mapping in the surface normal
direction [8] (Fig 1).

Y. Yeo
University of Florida
E-mail: yiyeo@cise.ufl.edu

T. Ni
University of Florida

A. Myles
University of Florida

V. Goel
Advanced Micro Devices

J. Peters
University of Florida

Fig. 1 GPU smoothed quad meshes with displacement mapping.

Fig. 2 Patches from ordinary quads (light) and extraordinary quads
(dark).

For real-time applications such as gaming, interactive
animation, simulation and morphing, it is convenient to of-
fload smoothing and rendering to the Graphics Processing
Unit (GPU). In particular, when morphing is implemented
on the GPU, it is inefficient to send large data streams on
a round trip to the CPU and back. Current and impending
GPU configurations favor short explicit surface definitions,
as derived below, over recursively defined surfaces.

For the following GPU-based surface construction, we
distinguish two types of quads: ordinary and extraordinary.
A quad is ordinary if all four vertices have 4 neighbors.
Such a facet will be converted into a degree 3 by 3 patch in
tensor-product Bernstein-Bézier (Bézier) form by the stan-
dard B-spline to Bézier conversion rules [4]. Therefore, any
two adjacent patches derived from ordinary quads will join

2 Young In Yeo et al.

C2. The interesting aspect of this paper is the conversion of
theextraordinaryquads, i.e. quads having at least one, and
possibly up to four, vertices of valencen 6= 4. We present a
new algorithm for converting both types of quads on the fly
so that

1. every ordinary quad is converted into a bicubic patch in
tensor-product Bézier form, Figure 3(b);

2. every extraordinary quad is converted into a composite
patch (shortc-patch) with cubic boundary and defined
by 24 coefficients, Figure 3(c);

3. the surface is by default smooth everywhere (Lemma 1);
4. the shape follows that of Catmull-Clark subdivision;
5. conversion and evaluation can be mapped to the GPU to

render at very high frame rates (at least an order of mag-
nitude faster than for example [2,19] on current hard-
ware).

(a) quad neighborhood (b) bicubic (c) c-patch

Fig. 3 (a) A quad neighborhood defining a surface piece. (b) A bicubic
patch with 4×4 control points marked as◦. This patch is the output
if the quad is ordinary, and used to determine the shape of a (c) c-
patch if the quad is extraordinary. A c-patch is defined by 4×6 control
points displayed as•. (For analysis, it can alternatively be represented
as fourC1-connected triangular pieces of degree 4 with degree 3 outer
boundaries identical to the bicubic patch boundaries.)

1.1 Some Alternative Mesh Smoothing Techniques on the
GPU

A number of techniques exist to smooth out quad meshes.
Catmull-Clark subdivision [3] is an accepted standard, but
does not easily port to the GPU. Evaluation using Stam’s
approach [20] is too complex for large meshes on the GPU.
The methods in [2,19,1] require separated quad meshes, i.e.
quad meshes such that each quad has at most one point with
valencen 6= 4. To turn quad meshes into separated quad
meshes usually means applying at least one Catmull-Clark
subdivision step on the CPU and four-fold data transfer to
the GPU. In more detail, Shiue [19] implements recursive
Catmull-Clark subdivision using several passes via the pixel
shader, using textures for storage and spiral-enumerated mesh
fragments. Bolz [1] tabulates the subdivision functions up
to a given density and linearly combines them in the GPU.
Bunnell [2] provides code for adaptive refinement. Even though
this code was optimized for an earlier generation GPUs, this
implementation adaptively renders the Frog (Figure 2) in
real-time on current hardware (See Section 5 for a compar-
ison with our approach). The main difference between our

and Bunnell’s implementation is that we decouple mesh con-
version from surface evaluation and therefore do not have
the primitive explosion before the second rendering pass.
Moreover, we place conversion early in the pipeline so that
the pixel shader is freed for additional tasks.

Three alternative smoothing strategies mimic Catmull-Clark
subdivision by generating a finite number of bicubic patches.
PCCM [14,15] generates NURBS output that could be ren-
dered, for example by the GPU algorithm of Guthe et al. [6].
But this has not been implemented to our knowledge.

PN-quads [16] are a variant of the three-sided patches
published in Vlachos et al. [22]. For each quad, one bicu-
bic ‘geometry patch’ and one biquadratic ‘normal patch’
are generated. Adjacent geometry patches joinC0 along the
edges and match the prescribed position P and normal N at
each vertex. The separately computed normal patches also
join continuously and interpolate the prescribed normals N
at the vertices. Since the lighting is based on the contin-
uous normal field defined by the normal patches, an im-
pression of smoothness is conveyed; only the silhouette be-
trays the lack of smoothness in the actual geometry defined
by the geometry patch. The shape of surfaces can be made
more rounded by taking as input the limit points and nor-
mals of Catmull-Clark (PN-lim in Figure 19). The method of
Loop and Schaefer [10] is very similar to PN-quads. It also
generates one bicubic patch per quad following the shape
of Catmull-Clark surfaces. Since these bicubic patches typ-
ically do not join smoothly, Loop and Schaefer compute
two additional patches whose cross product approximates
the normal of the bicubic patch. As pointed out in [22], these
trompe l’oeils represent a simple solution when true smooth-
ness is not needed. In a comparison to our method, we show
in Section 5 that the lack of smoothness in [10] can result in
visible artifacts.

The quincunx split of the quad by the c-patch reminds of
the Zwart-Powell element [23,18], simplest subdivision [17]
and 4-8 subdivision [21] due to the underlying box-spline
directions.

2 The Conversion Algorithm

Here we give the algorithm for converting the quad mesh
into coefficients that define a smooth surface of low degree.
Analysis of the properties of this new surface type and the
implementation of the algorithm on the GPU follow in the
next sections. Essentially, the algorithm consists of comput-
ing new points near a vertex using Table 1, and, for each ex-
traordinary quad, additional points according to Table 2 (see
Figure 4). In Section 3, we will verify that these new points
define a smooth surface and in Section 4, we show how the
two stages naturally map to the vertex shader and geometry
shader stage, respectively, of the current GPU pipeline.

Parallel Smoothing of Quad Meshes 3

vertex neighborhood: Table 1 c-patch interior: Table 2

Fig. 4 Vertex neighborhoods with coefficientsvi andei
j and c-patch

interiors with coefficientsbi
211, bi

121, bi
112 .

p0

p1

p2

p3

p∗

p2n−2
p2n−1

f0

f1

fn−1

v
e0

e1

en−1

Fig. 5 Smoothing the vertex neighborhood according to Table 1. The
center pointp∗, its direct neighborsp2 j and diagonal neighborsp2 j+1
form a vertex neighborhood.

f j := (4p∗ +2p2 j +2p2 j+2 + p2 j+1)/9
ej := (f j + f j−1)/2

v := 1
n(n+5)

(

n2p∗ +∑n−1
j=0

(
4p2 j + p2 j+1

))

t j := v+ 1
nσn

∑n−1
ℓ=0 cos2π(j−ℓ)

n eℓ, j = 0,1.

Table 1 Computing control pointsv, e, f and t, the projection of
e, at a vertex of valencen from the mesh pointsp j of a ver-
tex neighborhood; the subscripts are modulo 2n. By default, σn :=
(

cn +5+
√

(cn +9)(cn +1)
)

/16, the subdominant eigenvalue of

Catmull-Clark subdivision.

2.1 Computing the Vertex Neighborhood

In the first stage, we focus on a vertex neighborhood. A
vertex neighborhoodconsists of a mesh pointp∗ and mesh
pointspk, k= 0, . . . ,2n−1 of all quads surroundingp∗ (Fig-
ure 5). A vertexv computed according to Table 1 is the limit
point of Catmull-Clark subdivision as explained, for exam-
ple, in [7]. For n = 4, this choice is the limit of bicubic
subdivision, i.e. B-spline evaluation. The rules forej and
f j are the standard rules for converting a uniform bicubic
tensor-product B-spline to its Bernstein-Bézier representa-
tion of degree 3 by 3 [4]. The pointst j are a projection of
ej into a common tangent plane (see e.g. [5]). The default
scale factorσn is the subdominant eigenvalue of Catmull-
Clark subdivision. We note that forn = 4, ej+2 = 2v− ej
andσ4 = 1/2 so that the projection leaves the tangent con-

trol points invariant ast j = ej :

for n = 4, t j = v+
2
4
(ej −ej+2) = v+(ej −v) = ej . (1)

2.2 Bi-cubic patches and c-patches

In the second stage, we gather vertex neighborhoods to con-
struct patches on quads. Combining information from four
vertex neighborhoods as shown in Figure 6, we can populate
a tensor-product patchg of degree 3 by 3 in Bernstein-Bézier
(Bézier) form [4]:

g(u,v) :=
3

∑
k=0

3

∑
ℓ=0

gkℓ

(
3
k

)

uk(1−u)3−k
(

3
ℓ

)

vℓ(1−v)3−ℓ.

The patch is defined by its 16 coefficients orcontrol points
gkℓ. If the quad is ordinary, the formulas of Table 1 make
this patch the Bézier representation of a bicubic spline in
B-spline form. For example, in the notation of Figure 6,
(gk0)k=0,..3 = (v0, t0

0, t1
1,v1). If the quad is extraordinary, we

v0

f 0

e0
0 ∼ t0

0

e0
1

v1
f 1 e1

0
t1
1 ∼ e1

1

u1
u2

if extraordinary

00 10 20 30

01 11 21 31

02 12 22 32

03 13 23 33

g

bi

bi+1bi−1

bi−2 = bi+2

400 310 220 130 040

301 211 121 031

202 112 022

103 013

004

Fig. 6 Patch construction. On the left, the indices of the control points
of g are shown. Four vertex neighborhoods with verticesvi each con-
tribute one sector to assemble the 4×4 coefficients of the Bézier patch
g, for exampleg00 = v0, g10 = e0

0, g11 = f 0, g30 = v1, g31 = e1
0 (we

use superscripts to indicate vertices; see also Figure 9). On the right,
the same four sectors are used to determine a c-patch if the underlying
quad is extraordinary.Note that only a subset of the coefficients of the
four triangular pieces bi is actually computed to define the c-patch.
The full set of coefficients displayed here is only used to analyze the
construction.

use the bicubic patch to outline the shape as we replace it
by a c-patch (Figure 3(c)). A c-patch has the right degrees
of freedom to cheaply and locally construct a smooth sur-
face.The c-patchis defined by the 4×6 c-coefficients con-
structed in Tables 1 and 2:

vi , t i
0, t

i
1,b

i
211,b

i
121,b

i
112, i = 0,1,2,3.

By construction, the c-patch and an adjacent tensor-product
patchg have identical boundary curves of degree 3where
they meet, an important consideration for preventing gaps in
the final GPU implementation.

Alternatively, we can view one c-patch as the union of
four polynomial patchesbi , i = 0,1,2,3 of total degree4.

4 Young In Yeo et al.

bi
211 := bi

310+ 1+c
i

4 (t i+1
1 − t i

0)+ 1−c
i+1

8 (t i
0−vi)

+ 3
4(si+s

i+1)
(f i −ei

0)

bi
121 := bi

130+ 1+c
i+1

4 (t i
0− t i+1

1)+ 1−c
i

8 (t i+1
1 −vi+1)

+ 3
4(si+s

i+1)
(f i+1−ei+1

1)

bi
112 := g∗ +3(bi

211+bi
121−bi+1

121−bi−1
211)/16

+(bi+1
211+bi−1

121−bi+2
211−bi−2

121)/16

Table 2 Formulas for the 4× 3 interior control points that, together
with the vertex control pointsvi and the tangent control pointst i

j , define

ac-patch. See also Figures 9 and 10. Herec
i := cos2π

ni
, si := sin 2π

ni
and

superscripts are modulo 4. By default,g∗ := (∑3
i=0 vi + 3(ei

0 + ei
1) +

9 f i)/64, the central point of the ordinary patch.

domain 112 120 121

210 211 300

Fig. 7 The six basis functions of one sector of the c-patch.

A polynomial piecebi of total degree4 [4] has the Bézier
form

bi(u1,u2) := ∑
k+ℓ+m=4
k,ℓ,m≥0

bi
kℓm

4!
k!ℓ!m!

uk
1uℓ

2(1−u1−u2)
m. (2)

The 4×6 c-coefficients imply the interior control points of
this representation (2) byC1 continuity between the triangu-
lar pieces: forj = 0,1,2,3 andi = 0,1,2,3,

bi
3− j,0,1+ j = bi−1

0,3− j,1+ j := (bi
3− j,1, j +bi−1

1,3− j, j)/2; (3)

and the boundary control pointsbi
kℓ0 are implied by degree-

raising [4]:

bi
400 := vi , bi

310 := (vi +3t i
0)/4, bi

220 := (t i
0+ t i+1

1)/2,

bi
130 := (vi+1+3t i+1

1)/4, bi
040 := vi+1. (4)

Basis functions corresponding to the 24 c-coefficients of the
c-patch can be read off by setting one c-coefficient to one
and all others to zero and then applying (3) and (4) to obtain
the representation (2). Fig. 7 shows the six basis functions
of one sector. Two pairs are symmetric.

2.3 Interior c-patch-coefficients

bi
112

bi
121

bi−1
112

bi−1
211

Fig. 8 Dark lines cover the
control points involved in
the C2 constraints (5). The
points on dashed lines are
implied by averaging.

To derive the formulas forbi
211

and its symmetric counterpart
bi

121 note that the formulas must
guarantee a smooth transition
between bi and its neighbor
patch on an adjacent quad, re-
gardless whether the adjacent
quad is ordinary or extraordi-
nary. That is, the formulas are
derived to satisfysimultaneously
two types of smoothness con-
straints (see Section 3). By con-
trast, bi

112 is not pinned down
by continuity constraints. We
could choose eachbi

112 arbitrar-
ily without changing the formal smoothness of the resulting
surface. However, we opt for increased smoothness at the
center of the c-patch and additionally use the freedom to
closely mimic the shape of Catmull-Clark subdivision sur-
faces, as we did earlier for vertices. First, we approximately
satisfy fourC2 constraints across the diagonal boundaries at
the central pointb004 by enforcing





1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1












b0
112

b1
112

b2
112

b3
112







=
1
2







b0
211−b1

121−q
b1

211−b2
121−q

b2
211−b3

121−q
b3

211−b0
121−q







, (5)

whereq := 1
4 ∑3

i=0(b
i
211−bi

121). The perturbation byq is nec-
essary, since the coefficient matrix of theC2 constraints is
rank deficient. After perturbation, the system can be solved
with the last equation implied by the first three. We add the
constraint that the average ofbi

112 matchesg∗ := g(1
2, 1

2), the
center position of the bicubic patch. Now, we can solve for
bi

112, i = 0,1,2,3 to obtain the formula in Table 2.

3 Verifying Smoothness of the Surface

In this technical section we formally verify the following
lemma. For the purpose of the proof, we view the c-patch
in its equivalent representation (2) as four Bézier patches of
total degree 4.

Lemma 1 Two adjacent polynomial pieces a and b defined
by the rules of Section 2 (Table 1, Table 2,(3), (4)) meet at
least

(i) C2 if a and b correspond to two ordinary quads.
(ii) C1 if a and b are adjacent pieces of a c-patch;
(iii) C1 if a and b correspond to two quads, exactly one of

which is ordinary;
(iv) with tangent continuity if a and b correspond to two dif-

ferent extraordinary quads.

Proof (i) If a and b are bicubic patches corresponding to
ordinary quads, they are part of a bicubic spline with uni-
form knots and therefore meetC2. (ii) If a andb are adjacent
pieces of a c-patch then Equations (3) enforceC1 continuity.

Parallel Smoothing of Quad Meshes 5

For the remaining cases, letb be a triangular piece. Let
u the parameter corresponding to the quad edge between
b400 = v0, whereu = 0 and the valence isn0 andb040 = v1

whereu = 1 and the valence isn1 (see Figures 9 for (iii)
and 10 for case (iv)). By construction, the common bound-
ary b(u,0) = a(0,u) is a curve of degree 3 with Bézier con-
trol points(v0, t0

0, t1
1,v1) so that bicubic patches on ordinary

quads and triangular patches on extraordinary quads match
up exactly.

Denote by∂1b the partial derivative ofb along its first
parameter – i.e. along the common boundary – and by∂2b
the partial derivative in its second variable. Sinceb(u,0) =
a(0,u), we have∂1b(u,0) = ∂2a(0,u). The partial derivative
in the first variable ofa is, similarly,∂1a. We will verify that
the following conditions implying tangent continuity hold:

if one quad is ordinary (case (iii)),

∂1b(u,0) = 2∂2b(u,0)+∂1a(0,u); (6)

if both quads are extraordinary (case (iv)),
(
(1−u)λ0 +uλ1

)
∂1b(u,0) = ∂2b(u,0)+∂1a(0,u), (7)

whereλ0 := 1+ c
0, λ1 := 1− c

1, andc
i := cos(

2π
ni

).

Both equations, (6) and (7), equate vector-valued polyno-
mials of degree 3 since we write∂1b(u,0) in degree-raised
form. The equations hold if and only if all corresponding
Bézier coefficients are equal on both sides. Off hand, this
means checking four vector-valued equations for each of (6)
and (7). However, in both cases, the setup is symmetric with
respect to reversal of the direction in which the boundary
b(u,0) is traversed. That means, we need only check the first
two equations (6’) and (6”) of (6) and the first two equations
(7’) and (7”) of (7). We verify these equations by inserting
the formulas of Tables 1 and 2.

b

a

e0
0

e0
1

v0

f 1f 0

b301 b031
v1e1

1

e1
0

Fig. 9 C1 transition between a triangular patchb (top) and a bicubic
patcha (bottom).

To verify (6), the key observation is thatn0 = n1 = 4 if one
quad is ordinary. Hencec0 = c

1 = 0 ands
0 = s

1 = 1 (cf.
Table 2) andt i

j = ei
j . Therefore, for example (cf. Figure 9)

2∂2b(0,0) = 2·4(b301−v0) = 8
3
4
(
e0

0 +e0
1

2
−v0)

= 3(e0
0 +e0

1)−6v0,

where the factor34 stems from raising the degree from 3 to
4; and the second Bézier coefficient of∂1b(u,0) (in degree-
raised form) and of 2∂2b(u,0) are respectively (cf. Figure

9)

3
(e0

0−v0)+2(e1
1−e0

0)

3
and

2·4(b211−b310) = 8(
e1

1−e0
0

4
+

e0
0−v0

8
+3

f 0−e0
0

8
).

Then, comparing the first two Bézier coefficients of∂1b(u,0)
and 2∂2b(u,0)+∂1a(0,u) yields equality and establishesC1

continuity:

3(e0
0−v0)

︸ ︷︷ ︸

∂1b(0,0)

= 3(e0
0 +e0

1)−6v0

︸ ︷︷ ︸

2∂2b(0,0)

−3(e0
1−v0)

︸ ︷︷ ︸

∂1a(0,0)

(6′)

(e0
0−v0)+2(e1

1−e0
0) = 2(e1

1−e0
0)+(e0

0−v0)+3(f 0−e0
0)

−3(f 0−e0
0). (6′′)

b

a

t0
0

t0
n0−1

t0
1

v0

f 1f 0

b301 b031

a301 a031

v1

t1
0

t1
1

Fig. 10 G1 transition between two triangular patches.

The equations for (7) are similar, except that we need to
replaceej by t j and keep in mind that, by definition,

(t0
n0−1−v0)+(t0

1 −v0) = 2c
0(t0

0 −v0).

Hence, for example,

∂2b(0,0)+∂1a(0,0) = 4(b301−v0+a301−v0)

=
3
4

4·2c
0(t0

0 −v0).

The first of the four coefficient equations of (7) then sim-
plifies to

3(1+ c
0)(t0

0 −v0) = 4(b301+a301−2v0)

= 3(
t0
1 + t0

0

2
−v0+

tn0−1
1 + t0

0

2
−v0)

= 3
1
2
(2c

0(t0
0 −v0)+2(t0

0 −v0)). (7′)

Noting that terms(f0−e0
0)/(8(s0+s

1)) in the expansions of
b211 anda211 cancel, the second coefficient equation is

6λ0(t
1
1 − t0

0)+3λ1(t
0
0 −v0) = 12(b211+a211−2b310)

=
12·2(1+ c

0)

4
(t1

1 − t0
0)+

12·2(1− c
1)

8
(t0

0 −v0). (7′′)

It is easy to read off that the equalities hold. So the claim of
smoothness is verified.

6 Young In Yeo et al.

4 GPU Implementation

We implemented our scheme in DirectX 10 using the vertex
shader to compute vertex neighborhoods according to Table
1 and the geometry shader primitivetriangle with adjacency
to accumulate the coefficients of the bicubic patch or com-
pute a c-patch according to Table 2. We implemented con-
version plus rendering in two variants: a 1-pass and a 2-pass
scheme. Bicubic and c-patch are implemented in separate
shaders.

Fig. 11 2-pass implementation detailed in Table 3. The first pass con-
verts, the second renders. Note that the geometry shader only computes
at most 24 coefficients per patch and does not evaluate.

The2-pass implementationconstructs the patches in the
first pass using the vertex shader and the geometry shader
and evaluates positions and normals in the second pass. Pass
1 streams out only the 4×6 coefficients of a c-patch. it does
not stream out the 4×

(4+2
2

)
Bézier control points of the

equivalent triangular pieces. The data amplification neces-
sary to evaluate takes place by instancing a(u,v)-grid on the
vertex shader in thesecond pass. That is, wedo not stream

Fig. 12 At present, the 1-pass conversion-and-rendering must place
patch assembly and evaluation on the geometry shader. This is not ef-
ficient.

Pass 1 Conversion
VS In p∗,n,σ
VS Use texture lookup to retrievep2 j , p2 j+1

Computev,ej , f j , t0,t1 (Table 1)
VS Out v,t0,t1, f j , j = 0..n−1
GS In vi ,t i

0,t
i
1, f i , i = 0..3

GS if ordinary quad
assemblegkl ,k, l = 0..3 (Figure 6)

else
computebi

211,b
i
121,b

i
112 (Table 2)

GS Out if ordinary quad, stream outgkl ,k, l = 0..3.
else stream outbi

400,t
i
0,t

i
1,b

i
211,b

i
121,b

i
112,

i = 0..3.

Pass 2 Evaluating Position and Normal
VS In (u,v)
VS if ordinary quad

compute normal and position at(u,v)
by the tensored de Casteljau’s algorithm

else
Compute the remaining Bézier control points (3)
Compute normal and position at(u,v)
by de Casteljau’s algorithm adjusted to c-patches.

VS Out position, normal
PS In position, normal
PS compute color
PS Out color

Table 3 2-Pass conversion: VS=vertex shader, GS=geometry shader,
PS=pixel shader. VS Out of Pass 1 outputsn points f j for one vertex
(hence the subscript) and GS In of Pass 1 retrieves four points f i , each
generated by a different vertex of the quad (hence the superscript).

back large data sets after amplification. Position and nor-
mal are computed on the(u,v) domain[0..1]2 of the bicubic
or of the c-patch (not on any triangular domains). Table 3
lists the input, output and the computations of each pipeline
stage. Figure 11 illustrates this association of computations
and resources. Overall, the 2-pass implementation has small
stream-out, short geometry shader code and minimal ampli-
fication on the geometry shader (see Appendix).

In the 1-pass implementation, the evaluation immedi-
ately follows conversion in the geometry shader, using the

Parallel Smoothing of Quad Meshes 7

geometry shader’s ability to amplify, i.e. output multiplepoint
primitives for each facet (Figure 12). While a 1-pass imple-
mentation sounds more efficient than a 2-pass implementa-
tion, DX10 limits data amplification in the geometry shader
so that the maximal evaluation density is 8× 8 per quad.
Moreover, maximal amplification in the geometry shader slows
the performance. The performance difference between the
two implementations is easily visible when comparing Ta-
bles 4 and 5, with the caveat that we did not spend much
time optimizing the clearly slower 1-pass approach.

5 Results

We compiled and executed the implementation on the lat-
est graphics cards of both major vendors under DirectX10
and tested the performance for several industry-sized mod-
els. Two surface models and models with displacement map-
ping are shown in Figure 2 and 1 respectively. Table 4 sum-
marizes the performance of the 2-pass algorithm for differ-
ent granularities of evaluation. The (rocket) Frog model, in
particular, provides a challenge due to the large number of
extraordinary patches.

Mesh Frames per second
(verts,quads, eqs) N = 5 9 17 33
Sword (140,138, 38%) 965 965 965 703
Head (602,600, 100%) 637 557 376 165
Frog (1308,1292, 59%) 483 392 226 87

Table 4 Frames per second for some standard test meshes with each
patch evaluated on a grid of sizeN×N; eqs= percentage of extraor-
dinary quads. Sword and Frog are shown in Figure 2, Head in Figure
12 of [12]. For the smallest object, Sword, at low resolution, rendering
rather than evaluation is the bottleneck. The measurementswere made
on an NVidia GeForce 8800 GTX graphics card.

Mesh Slower 1-pass implementation
N = 2 5 8

Sword 389 96 43
Head 108 34 15
Frog 44 10 4

Table 5 Performance of the 1-pass implementation.

The Frog Party shown in Figure 18 currently renders at
50 fps for uniform evaluation of nine frogs for N=9, i.e. on
a 9×9 grid. That is, the implementation converts nine times
1292 coarse input quads, of which 59% are extraordinary,
and renders nearly 1.5 million polygons 50 times per second.
Additionally, our method scales well to higher tessellation
levels, since the patch creation time does not increase for
larger evaluation grids. On the same hardware, we measured
Bunnell’s efficient implementation (distribution accompany-
ing [2]) featuring the single frog model, i.e. 1/9th of the
work of the Frog Party, running at 44 fps with three subdi-
visions (equivalent to tessellation factor N=9). That is, GPU

smoothing of quad meshes is an order of magnitude faster.
Compared to [19], the speedup is even more dramatic. While
the comparison is not among equals since both [19] and [2]
implement recursive Catmull-Clark subdivision, it is never-
theless fair to observe that the speedup is at least partially
due to our avoiding stream back after amplification (data ex-
plosion due to refinement).

Fig. 13 Comparison to Catmull-Clark. Position (distance) and nor-
mal (angle) difference to the limit surface of Catmull-Clark subdivision
for (left) the scheme in [10] and (right) the c-patch surface (see also Ta-
ble 5). Lighter shading means better match. The number of compared
samples are (a) 24578, (b) 73730, (c) 73730.

8 Young In Yeo et al.

Figure 13,right, visualizes the approximation to a densely
refined Catmull-Clark mesh. Bothgeometricdistance, as per-
cent of the local quad size, andnormaldistance, in degrees
of variation, are measured. Large models and models with
a large percentage of regular quads appear visually indistin-
guishable when rendered by subdivision or c-patch smooth-
ing. We therefore chose small, predictable models with many
extraordinary input quads (and without displacement). Ta-
ble 5 quantifies and summarizes these distances. Since we
have been asked to compare c-patch surfaces to the non-
smooth approximation [10], Figure 13 and Table 5 juxtapose
the measurements. The more subtle effect of not creating
smooth surfaces is evident from Figure 14.

Average Distance to Catmull-Clark
(a) (b) (c)

[10]
Position 1.20 1.58 1.67
Normal 2.09 1.94 2.74
c-patch
Position 0.70 0.77 0.80
Normal 1.48 1.64 1.77

Table 6 Average deviation from the Catmull-Clark limit surface in po-
sition (parametric distance scaled by local quad size) and normal (an-
gle) for the examples in Fig. 13.

Fig. 14 C0 artifacts (top) of [10] at the base of the nostril and arch of
the eye (straight line). (bottom) c− patchconstruction for comparison.

Despite the lower total degree and internalC1 join, the
visual appearance of c-patches is remarkably similar to that
of bicubic patches. In particular, the close-up in Figure 17
illustrates our observation that c-patches do not create shape
problems compared to a single bicubic patch. As is generally

the recommendation for quad meshes, adjacent high-valent
vertices in the input model should be avoided (see the sin
terms in the denominator of the formulas of Table 2). The
video [13] (see screen shots in Figures 17, 15, 16, 18) illus-
trates real time displacement and animation.

6 Discussion

Smoothing quad meshes on the GPU offers an alternative to
highly refined facet representations transmitted to the GPU
and is preferable for interactive graphics and integrationwith
complex morphing and displacement. The separation into
vertex and patch construction stages isolates the computa-
tion on arbitrary valences from the final patch construction,
simplifying the vertex and geometry shaders. Moreover, the
data transfer between passes in the 2-pass conversion is low
since only 4×6 control points are intermittently generated.

Since we only compute and evaluate in terms of the 24 c-
patch coefficients, the computation of the cubic boundaries
shared by a bicubic and a c-patch is mathematically identi-
cal. An explicit ‘if’-statement in the evaluation guarantees
the exact same ordering of computations since boundary co-
efficients are only computed once, in the vertex shader, ac-
cording to Table 1. That is, there is no pixel drop out or gaps
in the rendered surface. The resulting surface is watertight.

We advertised a 2-pass scheme, since, as we argued, the
DX10 geometry shader is not well suited for data amplifi-
cation and evaluation after conversion. The 1-pass scheme
outlined in Section 4 may become more valuable with the
availability of a dedicated hardware tessellator [9]. Sucha
tessellator will make amplification more efficient and sup-
port watertightadaptive tessellation(which is why we only
discussed uniform tessellation in Section 4). Such a hard-
ware amplification will also benefit the 2-pass approach in
that the(u,v) domain tessellation, fed into the second pass
will be replaced by the amplification unit.

Acknowledgements This work benefited from CGAL’s half-edge data
structure, and used Bay Raitt’s Frog and the ZBrush Sword model. This
work was supported by NSF CCF-0728797.

References

1. J. Bolz and P. Schröder. Rapid evaluation of Catmull-Clark subdi-
vision surfaces. InWeb3D ’02: Proceeding of the seventh interna-
tional conference on 3D Web technology, pages 11–17, New York,
NY, USA, 2002. ACM Press.

2. M. Bunnell. GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation, chap-
ter 7. Adaptive Tessellation of Subdivision Surfaces with Dis-
placement Mapping. Addison-Wesley, Reading, MA, 2005.

3. E. Catmull and J. Clark. Recursively generated B-spline surfaces
on arbitrary topological meshes.Computer Aided Design, 10:350–
355, 1978.

4. G. Farin. Curves and Surfaces for Computer Aided Geometric
Design: A Practical Guide. Academic Press, 1990.

5. C. Gonzalez and J. Peters. Localized hierarchy surface splines.
In S. S. J. Rossignac, editor,ACM Symposium on Interactive 3D
Graphics, pages 7–15, 1999.

Parallel Smoothing of Quad Meshes 9

6. M. Guthe, A. Balázs, and R. Klein. GPU-based trimming and
tessellation of NURBS and T-spline surfaces.ACM Transactions
on Graphics, 24(3):1016–1023, 2005.

7. M. Halstead, M. Kass, and T. DeRose. Efficient, fair interpola-
tion using Catmull-Clark surfaces.Proceedings of SIGGRAPH
93, pages 35–44, Aug 1993.

8. A. Lee, H. Moreton, and H. Hoppe. Displaced subdivision sur-
faces. In K. Akeley, editor,Siggraph 2000, Computer Graphics
Proceedings, Annual Conference Series, pages 85–94. ACM Press
/ ACM SIGGRAPH / Addison Wesley Longman, 2000.

9. M. Lee. Next generation graphics programming on
Xbox 360, 2006. http://download.microsoft.com/download
/d/3/0/d30d58cd-87a2-41d5-bb53-baf560aa2373/nextgenera-
tion graphicsprogrammingon xbox 360.ppt.

10. C. Loop and S. Schaefer. Approximating Catmull-Clark subdivi-
sion surfaces with bicubic patches.ACM Transactions on Graph-
ics, 27(1):1–11, 2008.

11. T. Ni, Y. Yeo, A. Myles, V. Goel, and J. Peters. Smooth surfaces
from 4-sided facets. Technical Report 2007-429, Dept CISE,Uni-
versity of Florida, 2007.

12. T. Ni, Y. Yeo, A. Myles, V. Goel, and J. Peters. GPU smoothing of
quad meshes. In M. Spagnuolo, D. Cohen-Or, and X. Gu, editors,
IEEE International Conference on Shape Modeling and Applica-
tions, June 4 - 6, 2008, Stony Brook University, Stony Brook,New
York, USA, pages 3–10. ACM Press, 2008.

13. T. Ni, Y. Yeo, A. Myles, V. Goel, and J. Pe-
ters. GPU smoothing of quad meshes, 2008.
http://www.cise.ufl.edu/research/SurfLab/08smi.

14. J. Peters. Patching Catmull-Clark meshes. In K. Akeley,editor,
Siggraph 2000, Computer Graphics Proceedings, Annual Confer-
ence Series, pages 255–258. ACM Press / ACM SIGGRAPH /
Addison Wesley Longman, 2000.

15. J. Peters. Modifications of PCCM. Technical Report 2001-001,
Dept CISE, University of Florida, 2001.

16. J. Peters. PN-quads. Technical Report 2008-421, Dept CISE, Uni-
versity of Florida, 2008.

17. J. Peters and U. Reif. The simplest subdivision scheme for
smoothing polyhedra.ACM Trans. Graph., 16(4):420–431, 1997.

18. M. Powell. Piecewise quadratic surface fitting for contour plot-
ting. In Software for Numerical Mathematics, pages 253–271.
Academic Press, 1974.

19. L.-J. Shiue, I. Jones, and J. Peters. A realtime GPU subdivision
kernel.ACM Transactions on Graphics, 24(3):1010–1015, 2005.

20. J. Stam. Exact evaluation of Catmull-Clark subdivisionsurfaces at
arbitrary parameter values. InSIGGRAPH, pages 395–404, 1998.

21. L. Velho and D. Zorin. 4–8 subdivision.Computer-Aided Geomet-
ric Design, 18(5):397–427, 2001. Special Issue on Subdivision
Techniques.

22. A. Vlachos, J. Peters, C. Boyd, and J. L. Mitchell. CurvedPN
triangles. In2001, Symposium on Interactive 3D Graphics, Bi-
Annual Conference Series, pages 159–166. ACM Press, 2001.

23. P. Zwart. Multivariate splines with nondegenerate partitions.
SIAM Journal on Numerical Analysis, 10(4):665–673, 1973.

Appendix: Shader code

The HLSL code will be posted at the authors’ web site. The
code below has been edited for readability.

s t r u c t Inpu tMeshVer tex {
u i n t n : BLENDINDICES0 ; / / va l ence
u i n t index : BLENDINDICES1 ;} ; / / 1− r i n g s t a r t

s t r u c t S e c t o r { / / one c−patch s e c t o r
f l o a t 4 b112 ;
f l o a t 4 b211 , b121 ;
f l o a t 4 b300 , b210 , b120 ;} ;

t ypede f S e c t o r cPa tch [4] ; / / one c−patch
s t r u c t Ver texOutpu t {

u i n t n : BLENDINDICES1 ;
f l o a t 4 v : SV POSITION ;
f l o a t 4 t0 : TANGENT0;
f l o a t 4 t1 : TANGENT0;
f l o a t 4 f [MAX VALENCE] : POSITION0 ;

} ;

/ / Ve r t ex Shader
Ver texOutpu t Ve r t exBasedEx t yP a t ch Co ns t r uc t i on (

Inpu tMeshVer tex i npu t ,
u i n t vID : SV VertexID)

{
Ver texOutpu t vou t ;
f l o a t 4 d i r e c t [MAX] , / / d i r e c t ne ighbo rs

d iag [MAX] ; / / d i agona l ne ighbo rs
f l o a t 4 vLoca t i on ; / / v e r t e x p o s i t i o n

/ / p o s i t i o n (from v e r t e x t e x t u r e cache)
vLoca t i on = f l o a t 4 (gVe r texLoca t i on . Load (

i n t 3 (vID , gAnimationFrame , 0)) . xyz , 1) ;

/ / Se t v e r t e x to Catmul l−Clark l i m i t
u i n t n = i n p u t . n ;
u i n t index = i n p u t . index ;
vou t . v = vLoca t i on∗n∗n ;
[u n r o l l]
fo r (u i n t i = 0 ; i < n ; ++ i) {

f l o a t f tmp = gRingIndex . Load (
i n t 2 (index + i∗2 , 0)) ;

f l o a t 4 vtmp = gVer texLoca t i on . Load (
i n t 3 ((u i n t) ftmp , gAnimationFrame , 0)) ;

d i r e c t [i] = f l o a t 4 (vtmp . xyz , 1) ;
f tmp = gRingIndex . Load (

i n t 3 (index + i∗2+1 , 0)) ;
vtmp = gVer texLoca t i on . Load (

i n t 3 ((u i n t) ftmp , gAnimationFrame , 0)) ;
d i ag [i] = f l o a t 4 (vtmp . xyz , 1) ;
vou t . v += 4.0∗ d i r e c t [i] + d i ag [i] ;

}
vou t . v /= (n∗ (n + 5)) ;

/ / Face p o i n t s
[u n r o l l]
fo r (u i n t i = 0 ; i < n ; ++ i) {

u i n t im = (i +n−1) % n ;
vou t . f [i] = (4 . 0 / 9 . 0)∗ vou t . v

+ (2 . 0 / 9 . 0)∗ d i r e c t [im]
+ (1 . 0 / 9 . 0)∗ (d i r e c t [i]+ d i ag [im]) ;

}

/ / Two t a n g e n t s ; cCos (n , i)= cos ((2∗ PI / n)∗ i
vou t . t 0 = f l o a t 4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;
vou t . t 1 = f l o a t 4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;
fo r (u i n t i = 0 ; i < n ; ++ i) {

u i n t i p = (i + 1) % n ;
f l o a t 4 e = 0 . 5∗ (vou t . f [i]+ vou t . f [i p]) ;
vou t . t 0 += cCos (n , i)∗ e ;
vou t . t 1 += cSin (n , i)∗ e ;

}
cons t f l o a t c = cCos (n , 1) ;
cons t f l o a t sigma =

(c+5+ s q r t ((c +9)∗ (c + 1))) / 1 6 ;
vou t . t 0 /= n ∗ sigma ;
vou t . t 1 /= n ∗ sigma ;
vou t . n = i n p u t . n ;
re turn vou t ;

}

10 Young In Yeo et al.

/ / Geometry Shader
[maxver texcount (2 4)]
void F a c e t B a s e d E x t y P a t c h C o n s t r uc t i on (

t r i a n g l e a d j Ver texOutpu t i n p u t [6] ,
i n o u t Po in tS t ream<GS OUTPUT> Stream ,
u i n t pID : SV Pr im i t i ve ID)

{
cPa tch pa t ; / / c−patch c o e f f i c i e n t s

/ / Load index o f f s e t s (packed in u i n t)
u i n t r o t p a c k e d = gOf f se tDa ta . Load (

i n t 3 (pID , 0 , 0)) ;
u i n t r o t o f f [4] ;
[u n r o l l] / / 4 b i t s encode each r o t a t i o n
fo r (u i n t i = 0 ; i < 4 ; ++ i)

r o t o f f [i] = (r o t p a c k e d >> (4∗ i)) & 0xF ;

/ / Compute b300 , b210 and b120
[u n r o l l]
fo r (u i n t k = 0 ; k < 4 ; ++k) {

cons t u i n t km = (k+4−1) % 4 ;
cons t u i n t n = i n p u t [k] . n ;
cons t u i n t o f f = r o t o f f [k] ;
cons t u i n t offm = (o f f +(n−1))%n ;
pa t [k] . b300 = i n p u t [k] . v ;
pa t [k] . b210 = i n p u t [k] . v

+ i n p u t [k] . t 0∗cCos (n , offm)
+ i n p u t [k] . t 1∗cS in (n , offm) ;

pa t [km] . b120 = i n p u t [k] . v
+ i n p u t [k] . t 0∗cCos (n , o f f)
+ i n p u t [k] . t 1∗cS in (n , o f f) ;

}

/ / Compute b211 , b121 f o r each s e c t o r
(removed − see Tab le 2)

/ / Compute b112 f o r each s e c t o r
[u n r o l l]
fo r (u i n t k = 0 ; k < 4 ; ++k) {

cons t u i n t km = (k +3) % 4 ;
cons t u i n t km2 = (k +2) % 4 ;
cons t u i n t kp = (k +1) % 4 ;
cons t u i n t kp2 = (k +2) % 4 ;
pa t [k] . b112 = b004

+ (3 . 0 / 1 6 . 0) ∗ (
pa t [k] . b211 + pa t [k] . b121
− pa t [kp] . b121 − pa t [km] . b211)

+ (1 . 0 / 1 6 . 0) ∗ (
pa t [kp] . b211 + pa t [km] . b121
− pa t [kp2] . b211− pa t [km2] . b121) ;

}

/ / St ream out t he c−patch c o n t r o l p o i n t s
(removed−− s t r a i g h t f o r w a r d)

}

Fig. 15 Real time displacement on the twisting Sword model. See [13].

Fig. 16 Real time displacement on the twisting Frog model [13].

Fig. 17 Close-up of the Frog.

Fig. 18 Asynchronous animation of nine Frogs [13].

Parallel Smoothing of Quad Meshes 11

Input

PN

PN-
lim

ACC

c-
patch

CC

Fig. 19 Comparison.(Input) quad mesh, (PN)-quad and (PN-lim) PN-Quad using Catmull-Clark limit points and normals [16], (ACC) [10]
(c-patch) this paper, (CC) Catmull-Clark subdivision.

