Skip to main content
Log in

Shape-sensitive MLS deformation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This work presents methods for deforming meshes in a shape-sensitive way using Moving Least Squares (MLS) optimization. It extends an approach for deforming space (Cuno et al. in Proceedings of the 27th Computer Graphics International Conference, pp. 115–122, 2007) by showing how custom distance metrics may be used to achieve deformations which preserve the overall mesh shape. Several variant formulations are discussed and demonstrated, including the use of geodesic distances, distances constrained to paths contained in the mesh, the use of skeletons, and a reformulation of the MLS scheme which makes it possible to affect the bending behavior of the deformation. Finally, aspects of the implementation of these techniques in parallel architectures such as GPUs (graphics processing units) are described and compared with CPU-only implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexa, M.: Interactive shape editing. In: ACM SIGGRAPH Courses (2006)

  2. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)

    Article  Google Scholar 

  3. Au, O.K.-C., Fu, H., Tai, C.-L., Cohen-Or, D.: Handle-aware isolines for scalable shape editing. ACM Trans. Graph. 26(3), 83 (2007)

    Article  Google Scholar 

  4. Baran, I., Popović, J.: Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26(3), 72 (2007)

    Article  Google Scholar 

  5. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–258 (1992)

    Article  Google Scholar 

  6. Botsch, M., Kobbelt, L.: Real-time shape editing using radial basis functions. Comput. Graph. Forum 24(3), 611–621 (2005)

    Article  Google Scholar 

  7. Botsch, M., Pauly, M., Wicke, M., Gross, M.: Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26(3), 339–347 (2007)

    Article  Google Scholar 

  8. Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230 (2008)

    Article  Google Scholar 

  9. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.: Brook for GPUs: stream computing on graphics hardware. ACM Trans. Graph. 23(3), 777–786 (2004)

    Article  Google Scholar 

  10. Cornea, N.D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13(3), 530–548 (2007)

    Article  Google Scholar 

  11. Cuno, A., Esperanca, C., Oliveira, A., Cavalcanti, P.R.: 3D as-rigid-as-possible deformations using MLS. In: Proceedings of the 27th Computer Graphics International Conference, Petropolis, RJ, Brazil, May 2007, pp. 115–122

  12. Fedor, M.: Application of inverse kinematics for skeleton manipulation in real-time. In: SCCG ’03: Proceedings of the 19th Spring Conference on Computer Graphics, New York, NY, USA, pp. 203–212. ACM, New York (2003)

    Chapter  Google Scholar 

  13. Fu, H., Au, O.K.-C., Tai, C.-L.: Effective derivation of similarity transformations for implicit Laplacian mesh editing. Comput. Graph. Forum 26(1), 34–45 (2007)

    Article  Google Scholar 

  14. Horn, B.K.P.: Closed-form solutions of absolute orientation using unit quaternions. J. Opt. Soc. Am. 4(4), 629–642 (1987)

    Article  MathSciNet  Google Scholar 

  15. Kanatani, K.: Analysis of 3-D rotation fitting. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 543–549 (1994)

    Article  Google Scholar 

  16. Lawrence Livermore National Laboratory: POSIX Threads Programming (1995). https://computing.llnl.gov/tutorials/pthreads/

  17. McCool, M., Du Toit, S., Popa, T., Chan, B., Moule, K.: Shader algebra. ACM Trans. Graph. 23(3), 787–795 (2004)

    Article  Google Scholar 

  18. McCool, M.D., D’Amora, B.: Programming using Rapidmind on the cell BE. In: Proceedings of the ACM/IEEE Conference on Supercomputing, NY, USA, p. 222. ACM, New York (2006)

    Chapter  Google Scholar 

  19. Nealen, A., Sorkine, O., Alexa, M., Cohen-Or, D.: A sketch-based interface for detail-preserving mesh editing. ACM Trans. Graph. 24(3), 1142–1147 (2005)

    Article  Google Scholar 

  20. NVIDIA Corporation: CUDA Environment—Compute Unified Device Architecture (2007). http://www.nvidia.com/object/cuda_home.html

  21. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, New York (1987)

    MATH  Google Scholar 

  22. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU computing. Proc. IEEE 96(5), 879–899 (2008)

    Article  Google Scholar 

  23. Papakipos, M.: The peakstream platform: High-productivity software development for GPUs. In: Proceedings of LCI Conference on High-Performance Clustered Computing (2007)

  24. Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM Trans. Graph. 25(3), 533–540 (2006)

    Article  Google Scholar 

  25. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: SGP’ 07: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 109–116. Eurographics Association, Aire-la-Ville (2007)

    Google Scholar 

  26. Sumner, R.W., Schmid, J., Pauly, M.: Embedded deformation for shape manipulation. ACM Trans. Graph. 26(3), 80:1–80:7 (2007)

    Article  Google Scholar 

  27. Tarditi, D., Puri, S., Oglesby, J.: Accelerator: using data parallelism to program GPUs for general-purpose uses. In: XII ASPLOS, New York, NY, USA, pp. 325–335. ACM, New York (2006)

    Chapter  Google Scholar 

  28. Walker, M.W., Shao, L., Volz, R.A.: Estimating 3-D location parameters using dual number quaternions. CVGIP: Image Underst. 54(3), 358–367 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Esperança.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuno Parari, A.E., Esperança, C. & Oliveira, A.A.F. Shape-sensitive MLS deformation. Vis Comput 25, 911–922 (2009). https://doi.org/10.1007/s00371-009-0369-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0369-6

Keywords

Navigation