Skip to main content
Log in

Differential geometry images: remeshing and morphing with local shape preservation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel conception of differential geometry images (DGIM), encapsulating differential coordinates to traditional geometry images. DGIM preserves the local geometric characteristics in many graphics applications, such as model remeshing and morphing. The traditional geometry images using Cartesian coordinates require normal maps for correctly rendering models, because they neglect the existence of local geometric details in the image structure, which leads us to compute the normals and curvatures imprecisely. Using our differential geometry images, normals can be reconstructed easily and correctly thereafter normal maps are no longer required. In addition, DGIM can be easily applied to mesh morphing due to its regular topology and well-preserved local details. In this paper, we also demonstrate a variety of plausible mesh morphing results based on DGIM in shape space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carmo, M.P.D.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976). Chap. 1, pp. 16–23

    MATH  Google Scholar 

  2. Cheng, H.L., Edelsbrunner, H.: Shape space from deformation. In: Proceeding of Pacific Graphics, pp. 104–113 (1998)

  3. Cohen-Or, D., Sorkine, O.: Encoding meshes in differential coordinates. In: (SCCG06) Proceedings of the 22nd Spring Conference on Computer Graphics. ACM, New York (2006)

    Google Scholar 

  4. Fallgren, M.: On the robustness of conjugate-gradient methods and quasi-Newton methods. Master’s thesis, Department of Mathematics, Royal Institute of Technology (2006)

  5. Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23(98), 298–305 (1973)

    MathSciNet  Google Scholar 

  6. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14(4), 231–250 (1997)

    Article  MATH  Google Scholar 

  7. Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Friedel, I., Schröder, P., Desbrun, M.: Unconstrained spherical parameterization. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Sketches, p. 134. ACM, New York (2005)

    Chapter  Google Scholar 

  9. Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D meshes. In: SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pp. 358–363. ACM, New York (2003)

    Chapter  Google Scholar 

  10. Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. ACM Trans. Graph. 21(3), 355–361 (2002)

    Article  Google Scholar 

  11. Hormann, K., Greiner, G.: MIPS: An efficient global parametrization method. In: Laurent, P.J., Sablonnière, P., Schumaker, L.L. (eds.) Curve and Surface Design: Saint-Malo 1999, Innovations in Applied Mathematics, pp. 153–162. Vanderbilt University Press, Nashville (2000)

    Google Scholar 

  12. Ji, J., Wu, E., Li, S., Liu, X.: Dynamic LOD on GPU. In: CGI ’05: Proceedings of the Computer Graphics International 2005, pp. 108–114. IEEE Computer Society, Washington (2005)

    Google Scholar 

  13. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 279–286. ACM, New York (2000)

    Chapter  Google Scholar 

  14. Khodakovsky, A., Schröder, P., Sweldens, W.: Progressive geometry compression. In: Akeley, K. (ed.) Siggraph 2000, Computer Graphics Proceedings, pp. 271–278. ACM, New York (2000)

    Google Scholar 

  15. Kilian, M., Mitra, N.J., Pottmann, H.: Geometric modeling in shape space. ACM Trans. Graph. 26(3), 64 (2007)

    Article  Google Scholar 

  16. Klassen, E., Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004)

    Article  Google Scholar 

  17. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least-squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21(3), 362–371 (2002)

    Article  Google Scholar 

  18. Losasso, F., Hoppe, H., Schaefer, S., Warren, J.: Smooth geometry images. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 138–145. Eurographics Association (2003)

  19. Praun, E., Hoppe, H.: Spherical parametrization and remeshing. ACM Trans. Graph. 22(3), 340–349 (2003)

    Article  Google Scholar 

  20. Saba, S., Yavneh, I., Gotsman, C., Sheffer, A.: Practical spherical embedding of manifold triangle meshes. In: SMI ’05: Proceedings of the International Conference on Shape Modeling and Applications 2005, pp. 258–267. IEEE Computer Society, Washington (2005)

    Google Scholar 

  21. Sander, P.V., Wood, Z.J., Gortler, S.J., Snyder, J., Hoppe, H.: Multi-chart geometry images. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 146–155. Eurographics Association (2003)

  22. Sheffer, A., Gotsman, C., Dyn, N.: Robust spherical parameterization of triangular meshes. Computing 72(1–2), 185–193 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sheffer, A., Lévy, B., Mogilnitsky, M., Bogomyakov, A.: Abf++: fast and robust angle based flattening. ACM Trans. Graph. 24(2), 311–330 (2005)

    Article  Google Scholar 

  24. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Tech. report, Pittsburgh, PA, USA (1994)

  25. Sorkine, O.: Laplacian mesh processing. Ph.D. thesis, School of Computer Science, Tel Aviv University (2006)

  26. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 175–184. ACM, New York (2004)

    Chapter  Google Scholar 

  27. Sorkine, O., Cohen-Or, D., Toledo, S.: High-pass quantization for mesh encoding. In: SGP ’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 42–51. Eurographics Association, Aire-la-Ville (2003)

    Google Scholar 

  28. Tarini, M., Hormann, K., Cignoni, P., Montani, C.: Polycube-maps. ACM Trans. Graph. 23(3), 853–860 (2004)

    Article  Google Scholar 

  29. Toledo, S.: Taucs: A Library of Sparse Linear Solvers, version 2.2. Available online at http://www.tau.ac.il/~stoledo/taucs/ (Sept. 2003)

  30. Wu, J., Liu, X., Wu, E.: Spline-based mesh editing. J. Comput. Aided Des. Comput. Graph. 19(07), 907–912 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiliang Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, W., Sheng, B., Lv, W. et al. Differential geometry images: remeshing and morphing with local shape preservation. Vis Comput 26, 51–62 (2010). https://doi.org/10.1007/s00371-009-0376-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0376-7

Keywords

Navigation