Skip to main content
Log in

Protrusion-oriented 3D mesh segmentation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present a segmentation algorithm which partitions a mesh based on the premise that a 3D object consists of a core body and its constituent protrusible parts. Our approach is based on prominent feature extraction and core approximation and segments the mesh into perceptually meaningful components. Based upon the aforementioned premise, we present a methodology to compute the prominent features of the mesh, to approximate the core of the mesh and finally to trace the partitioning boundaries which will be further refined using a minimum cut algorithm. Although the proposed methodology is aligned with a general framework introduced by Lin et al. (IEEE Trans. Multimedia 9(1):46–57, 2007), new approaches have been introduced for the implementation of distinct stages of the framework leading to improved efficiency and robustness. The evaluation of the proposed algorithm is addressed in a consistent framework wherein a comparison with the state of the art is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N., Azariadis, P.: 3D Mesh segmentation methodologies for CAD applications. Comput. Aided Des. Appl. 4(6), 827–841 (2007)

    Google Scholar 

  2. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., Tal, A.: Mesh segmentation—a comparative study. In: IEEE International Conference on Shape Modeling and Applications. IEEE, Matsushima (2006)

    Google Scholar 

  3. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical segmentation based on fitting primitives. Vis. Comput. 22(3), 181–193 (2006)

    Article  Google Scholar 

  4. Hilaga, M., Shinagawa, Y., Komura, T., Kunii, T.L.: Topology matching for full automatic similarity estimation of 3D. In: SIGGRAPH, pp. 203–212. ACM, Los Angeles (2001)

    Google Scholar 

  5. Hoffman, D., Richards, W.: Parts of recognition. Cognition 18, 65–96 (1984)

    Article  Google Scholar 

  6. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: SIGGRAPH, pp. 279–286. ACM, New Orleans (2000)

    Chapter  Google Scholar 

  7. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22(3), 954–961 (2003)

    Article  Google Scholar 

  8. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Vis. Comput. 21(8–10), 639–648 (2005)

    Google Scholar 

  9. Kim, D.H., Yun, I.D., Lee, S.U.: A new shape decomposition scheme for graph-based representation. Pattern Recognit. 38(5), 673–689 (2005)

    Article  Google Scholar 

  10. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.-P.: Mesh scissoring with minima rule and part salience. Comput. Aided Geom. Des. 22(5), 444–465 (2005)

    Article  MATH  Google Scholar 

  11. Levy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21(3), 362–371 (2002)

    Article  Google Scholar 

  12. Li, X., Toon, T., Tan, T., Huang, Z.: Decomposing polygon meshes for interactive applications. In: Proc. of the 2001 Symposium on Interactive 3D Graphics, pp. 35–42, NC, USA (2001)

  13. Lin, H.S., Liao, H.M., Lin, J.: Visual salience-guided mesh decomposition. IEEE Trans. Multimedia 9(1), 46–57 (2007)

    Article  Google Scholar 

  14. Page, D., Koschan, A., Abidi, M.: Perception-based 3D triangle mesh segmentation using fast marching watersheds. In: Proc. Intl. Conf. on Computer Vision and Pattern Recognition, pp. 27–32, Wisconsin, USA (2003)

  15. Shamir, A.: Segmentation and shape extraction of 3D boundary meshes. In: State-of-the-Art Report, Proceedings Eurographics (2006)

  16. Shapira, L., Shamir, A., Cohen-Or, Lior Shapira, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24(4), 249–259 (2008)

    Article  Google Scholar 

  17. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  18. Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decomposition. In: Eurographics, pp. 219–228. Eurographics Association, Saarbrücken (2002)

    Google Scholar 

  19. Sukumar, S.R., Page, D.L., Koschan, A.F., Gribok, A.V., Abidi, M.A.: Shape measure for identifying perceptually informative parts of 3D objects. In: 3D Data Processing, Visualization and Transmission, pp. 679–686. IEEE, Chapel Hill (2006)

    Chapter  Google Scholar 

  20. Valette, S., Kompatsiaris, I., Strintzis, M.G.: A polygonal mesh partitioning algorithm based on protrusion conquest for perceptual 3D shape description. In: Workshop towards Semantic Virtual Environments, pp. 68–76. Villars, Switzerland (2005)

  21. Wu, K., Levine, M.D.: 3D Part Segmentation Using Simulated Electrical Charge Distributions. Trans. Pattern Anal. Mach. Intell. 19(11), 1223–1235 (1997)

    Article  Google Scholar 

  22. Zhang, H., Liu, R.: Mesh segmentation via recursive and visually salient spectral cuts. In: Vision, Modeling, and Visualization, pp. 429–436. Erlangen (2005)

  23. Zhang, Y., Paik, J., Koschan, A., Abidi, M.A.: A simple and efficient algorithm for part decomposition of 3D triangulated models based on curvature analysis. In: International Conference on Image Processing, pp. 273–276. IEEE, Rochester (2002)

    Google Scholar 

  24. Zuckerberger, E., Tal, A., Shlafman, S.: Polyhedral surface decomposition with applications. Comput. Graph. 5, 733–743 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Agathos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agathos, A., Pratikakis, I., Perantonis, S. et al. Protrusion-oriented 3D mesh segmentation. Vis Comput 26, 63–81 (2010). https://doi.org/10.1007/s00371-009-0383-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0383-8

Keywords

Navigation