Skip to main content
Log in

Geometry-based control of fire simulation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

High-level control of fire is very attractive to artists, as it facilitates a detail-free user interface to make desirable flame effects. In this paper, a unified framework is proposed for modeling and animating fire under general geometric constraints and evolving rules. To capture the fire projection on user’s model animation, we develop a modified closest-point method (MCPM) to handle dynamic situations while maintaining the robustness of the closest-point method. A control blue core (CBC) is designed and generated automatically from the fire projection at each time step. It translates the geometric constraints and the user-specified evolving rules into implicit control conditions. Our L-Speed function leverages CBC’s shape information and conducts the large-scale motion of fire, leaving the basic physically-based model to refine simulation details. The experimental results show the effectiveness of our method for modeling fire propagation along complex curves or surfaces, or forming a flaming shape and following its motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beaudoin, P., Paquet, S., Poulin, P.: Realistic and controllable fire simulation. In: Proceedings of Graphics Interface 2001, Ottawa, Ontario, Canada, pp. 159–166 (2001)

  2. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. PAMI 14(2), 239–256 (1992)

    Google Scholar 

  3. Breen, D.E., Whitaker, R.T.: A level-set approach for the metamorphosis of solid models. IEEE Trans. Vis. Comput. Graph. 7(2), 173–192 (2001)

    Article  Google Scholar 

  4. Chen, X.D., Yong, J.H., Wang, G., Paul, J.C., Xu, G.: Computing the minimum distance between a point and a NURBS curve. Comput. Aided Des. 40(1011), 1051–1054 (2008)

    Article  Google Scholar 

  5. Chiba, N., Muraoka, K., Takahashi, H., Miura, M.: Two-dimensional visual simulation of flames, smoke and the spread of fire. J. Vis. Comput. Animat. 5(1), 37–53 (1994)

    Article  Google Scholar 

  6. Fattal, R., Lischinski, D.: Target-driven smoke animation. In: SIGGRAPH’04: ACM SIGGRAPH 2004 Papers, pp. 441–448. ACM, New York (2004)

    Chapter  Google Scholar 

  7. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: Proceedings of SIGGRAPH 2001, pp. 15–22. ACM, New York (2001)

    Chapter  Google Scholar 

  8. Fendell, F.E., Wolff, M.F.: Forest fires—Behavior and ecological effects. Academic Press, San Diego (2001)

    Google Scholar 

  9. Hong, J.M., Shinar, T., Fedkiw, R.: Wrinkled flames and cellular patterns. In: SIGGRAPH’07: ACM SIGGRAPH 2007 Papers, pp. 1–6. ACM, New York (2007)

    Google Scholar 

  10. Horvath, C., Geiger, W.: Directable, high-resolution simulation of fire on the GPU. In: SIGGRAPH’09: ACM SIGGRAPH 2009 papers, pp. 1–8. ACM, New York (2009)

    Google Scholar 

  11. Ishikawa, T., Miyazaki, R., Dobashi, Y., Nishita, T.: Visual simulation of spreading fire. In: NICOGRAPH Internation’05, pp. 43–48 (2005)

  12. Jones, M.W.: The production of volume data from triangular meshes using voxelisation. Comput. Graph. Forum 15, 311–318 (1996)

    Article  Google Scholar 

  13. Karabassi, E.-A., Papaioannou, G., Theoharis, T.: A fast depth-buffer-based voxelization algorithm. J. Graph. Tools 4(4), 5–10 (1999)

    Google Scholar 

  14. Lee, H., Kim, L., Meyer, M.: Desbrun, M. Meshes on fire. In: Proceedings of the Eurographic Workshop on Computer Animation and Simulation, pp. 75–84. Springer, New York (2001)

    Google Scholar 

  15. Liu, S., Liu, Q., An, T., Sun, J., Peng, Q.: Physically based simulation of thin-shell objects burning. Vis. Comput. 25(5–7), 687–696 (2009)

    Article  Google Scholar 

  16. Losasso, F., Irving, G., Guendelman, E.: Melting and burning solids into liquids and gases. IEEE Trans. Vis. Comput. Graphics 12(3), 343–352 (2006)

    Article  Google Scholar 

  17. Macdonald, C.B., Ruuth, S.J.: Level set equations on surfaces via the closest-point method. J. Sci. Comput. 35(23), 219–240 (2008)

    Article  MathSciNet  Google Scholar 

  18. Mallet, V., Keyes, D.E., Fendell, F.E.: Modeling wildland fire propagation with level set methods. ArXiv e-prints (2007)

  19. Melek, Z., Keyser, J.: Interactive Simulation of Fire. In: PG’02: Proceedings of the 10th Pacific Conference on Computer Graphics and Applications, p. 431 (2002)

  20. Nguyen, D.Q., Fedkiw, R.P., Jensen, H.W.: Physically based modeling and animation of fire. In: SIGGRAPH’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 721–728. ACM, New York (2002)

    Chapter  Google Scholar 

  21. Nguyen, D.Q., Fedkiw, R.P., Kang, M.: A boundary condition capturing method for incompressible flame discontinuities. J. Comput. Phys. 172(1), 71–98 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Perry, C.H., Picard, R.W.: Synthesizing flames and their spreading. In: Proceedings of the Fifth Eurographics Workshop on Animation and Simulation, pp. 1–14 (1994)

  24. Qian, J., Tryggvason, G.: Law, C.K.: A front tracking method for the motion of premixed flames. J. Comput. Phys. 144(1), 52–69 (1998)

    Article  Google Scholar 

  25. Reeves, W.T.: Particle systems—A technique for modeling a class of fuzzy objects. In: SIGGRAPH’83: Proceedings of the 10th Annual Conference on Computer Graphics and Interactive Techniques, pp. 359–375. ACM, New York (1983)

    Google Scholar 

  26. Shi, L., Yu, Y.: Controllable smoke animation with guiding objects. ACM Trans. Graph. 24(1), 140–164 (2005)

    Article  MathSciNet  Google Scholar 

  27. Shi, L., Yu, Y.: Taming liquids for rapidly changing targets. In: SCA’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 229–236. ACM, New York (2005)

    Chapter  Google Scholar 

  28. Stam, J., Fiume, E.: Depicting fire and other gaseous phenomena using diffusion processes. In: SIGGRAPH’95: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 129–136. ACM, New York (1995)

    Chapter  Google Scholar 

  29. Thürey, N., Keiser, R., Pauly, M., Rüde, U.: Detail-preserving fluid control. In: SCA’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, pp. 7–12 (2006)

  30. Wei, X., Li, W., Mueller, K., Kaufman, A.: Simulating fire with texture splats. In: VIS’02: Proceedings of the Conference on Visualization’02, Boston, Massachusetts, pp. 227–235 (2002)

  31. Xu, J.J., Zhao, H.K.: An Eulerian formulation for solving partial differential equations along a moving interface. J. Sci. Comput. 19(13), 573–594 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhao, Y., Wei, X., Fan, Z., Kaufman, A., Qin, H.: Voxels on fire. In: VIS’03: Proceedings of the 14th IEEE Visualization, p. 36. IEEE Comput. Soc., Los Alamitos (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Hong.

Electronic Supplementary Material

Below is the link to the electronic supplementary material. (WMV 5.51MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, Y., Zhu, D., Qiu, X. et al. Geometry-based control of fire simulation. Vis Comput 26, 1217–1228 (2010). https://doi.org/10.1007/s00371-009-0403-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0403-8

Navigation