Skip to main content
Log in

Solving the Shallow Water equations using 2D SPH particles for interactive applications

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we introduce a 2D particle-based approach to achieve realistic water surface behaviors for interactive applications. We formulate 2D particle-based Shallow Water equations using the Smoothed Particle Hydrodynamics. Particles defined with specific amount of water volume interplay with each other, which generates the horizon flow and the water surface motion. By the application of the particle-based Lagrangian framework to the 2D Shallow Water simulation, our method allows the water particles to move freely without being confined to a grid. The motion of the particles can represent global flow with dynamic waves covering a large area while avoiding extensive 3D fluid dynamics computation. The 2D particle-based Shallow Water equations are straightforward and computed fast with the GPU-based implementation. Experiments on a standard hardware demonstrate the performance of our approach which is running on the GPU, and the results show a realistic motion of the water surface at interactive rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amada, T., Imura, M., Yasumuro, Y., Manabe, Y., Chihara, K.: Particle-based fluid simulation on GPU. In: ACM Workshop on General-Purpose Computing on Graphics Processors, vol. 41, p. 42 (2004)

  2. Ata, R., Soulaïmani, A.: A stabilized SPH method for inviscid shallow water flows. Int. J. Numer. Methods Fluids 47(2), 139–159 (2005)

    Article  MATH  Google Scholar 

  3. Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23(3), 377–384 (2004)

    Article  Google Scholar 

  4. Chen, J.X., Lobo, N.D.V.: Toward interactive-rate simulation of fluids with moving obstacles using Navier–Stokes equations. Graph. Models Image Process. 57(2), 107–116 (1995)

    Article  Google Scholar 

  5. Chen, J.X., Lobo, N.D.V., Hughes, C.E., Moshell, J.M.: Real-time fluid simulation in a dynamic virtual environment. IEEE Comput. Graph. Appl. 17(3), 52–61 (1997)

    Article  Google Scholar 

  6. Clavet, S., Beaudoin, P., Poulin, P.: Particle-based viscoelastic fluid simulation. In: SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 219–228. ACM Press, New York (2005)

    Chapter  Google Scholar 

  7. Cords, H.: Mode-splitting for highly detailed, interactive liquid simulation. In: GRAPHITE ’07: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, pp. 265–272 (2007)

  8. de Leffe, M., Le Touzé, D., Alessandrini, B.: SPH modeling of shallow-water coastal flows. In: ICHD ’08: Proceedings of the 8th International Conference on Hydrodynamics (2008)

  9. Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. ACM Trans. Graph. 21(3), 736–744 (2002)

    Article  Google Scholar 

  10. Foster, N., Fedkiw, R.: Practical animation of liquids. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 23–30 (2001)

  11. Fournier, A., Reeves, W.T.: A simple model of ocean waves. SIGGRAPH Comput. Graph. 20(4), 75–84 (1986)

    Article  Google Scholar 

  12. Gomez, M.: Interactive simulation of water surface. In: Deloura, M. (eds.) Game Programming Gems, pp. 187–194. Charles River Media, Boston (2000)

    Google Scholar 

  13. Green, S.: CUDA particles (2007). NVIDIA CUDA SDK v2.2

  14. Hinsinger, D., Neyret, F., Cani, M.P.: Interactive animation of ocean waves. In: SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 161–166. ACM Press, New York (2002)

    Chapter  Google Scholar 

  15. Irving, G., Guendelman, E., Losasso, F., Fedkiw, R.: Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. 25(3), 805–811 (2006)

    Article  Google Scholar 

  16. Kass, M., Miller, G.: Rapid, stable fluid dynamics for computer graphics. In: SIGGRAPH ’90: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, pp. 49–57 (1990)

  17. Layton, A., van de Panne, M.: A numerically efficient and stable algorithm for animating water waves. Vis. Comput. 18(1), 41–53 (2002)

    Article  MATH  Google Scholar 

  18. Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  19. Liu, M.B., Liu, G.R., Lam, K.Y.: Investigations into water mitigation using a meshless particle method. Shock Waves 12(3), 181–195 (2002)

    Article  Google Scholar 

  20. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23(3), 457–462 (2004)

    Article  Google Scholar 

  21. Losasso, F., Irving, G., Guendelman, E., Fedkiw, R.: Melting and burning solids into liquids and gases. IEEE Trans. Vis. Comput. Graph. 12(3), 343–352 (2006)

    Article  Google Scholar 

  22. Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008)

    Article  Google Scholar 

  23. Mitchell, J.: Real-time synthesis and rendering of ocean water. Tech. rep., ATI Research Technical Report (2005)

  24. Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30(1), 543–574 (1992)

    Article  Google Scholar 

  25. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159. ACM Press, New York (2003)

    Google Scholar 

  26. Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 237–244. ACM Press, New York (2005)

    Chapter  Google Scholar 

  27. O’Brien, J.F., Hodgins, J.K.: Dynamic simulation of splashing fluids. In: CA ’95: Proceedings of the Computer Animation, p. 198. IEEE Computer Society, Los Alamitos (1995)

    Chapter  Google Scholar 

  28. Paiva, A., Petronetto, F., Lewiner, T., Tavares, G.: Particle-based viscoplastic fluid/solid simulation. Comput. Aided Des. 41(4), 306–314 (2009)

    Article  Google Scholar 

  29. Peachey, D.R.: Modeling waves and surf. In: SIGGRAPH ’86: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 65–74 (1986)

  30. Premože, S., Tasdizen, T., Bigler, J., Lefohn, A., Whitaker, R.: Particle-based simulation of fluids. Comput. Graph. Forum 22(3), 401–410 (2003)

    Article  Google Scholar 

  31. Rodriguez-Paz, M., Bonet, J.: A corrected smooth particle hydrodynamics formulation of the shallow-water equations. Comput. Struct. 83(17–18), 1396–1410 (2005)

    Article  MathSciNet  Google Scholar 

  32. Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for manycore GPUs. In: IPDPS ’09: Proceedings of the 23rd IEEE International Parallel and Distributed Processing Symposium, pp. 1–10 (2009)

  33. Schneider, J., Westermann, R.: Towards real-time visual simulation of water surfaces. In: VMV ’01: Proceedings of the Vision Modeling and Visualization Conference 2001, pp. 211–218 (2001)

  34. Stam, J.: Stable fluids. In: SIGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121–128 (1999)

  35. Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., Ueki, H.: Realistic animation of fluid with splash and foam. Comput. Graph. Forum 22(3), 391–400 (2003)

    Article  Google Scholar 

  36. Tessendorf, J.: Interactive water surfaces. In: Kirmse, A. (ed.) Game Programming Gems4, pp. 265–274. Charles River Media, Boston (2004)

    Google Scholar 

  37. Thürey, N., Muller-Fischer, M., Schirm, S., Gross, M.: Real-time breaking waves for shallow water simulations. In: PG ’07: Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, pp. 39–46 (2007)

  38. Thürey, N., Rüde, U., Stamminger, M.: Animation of open water phenomena with coupled shallow water and free surface simulations. In: SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 157–164. ACM Press, New York (2006)

    Google Scholar 

  39. Ts’o, P.Y., Barsky, B.A.: Modeling and rendering waves: wave-tracing using beta-splines and reflective and refractive texture mapping. ACM Trans. Graph. 6(3), 191–214 (1987)

    Article  Google Scholar 

  40. Yuksel, C., House, D., Keyser, J.: Wave particles. ACM Trans. Graph. 26(3), 99 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyokwang Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Han, S. Solving the Shallow Water equations using 2D SPH particles for interactive applications. Vis Comput 26, 865–872 (2010). https://doi.org/10.1007/s00371-010-0439-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0439-9

Keywords

Navigation