Skip to main content
Log in

Multi-rate coupling of physical simulations for haptic interaction with deformable objects

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Real-time simulation of deformable objects involves many computational challenges to be solved, particularly in the context of haptic applications, where high update rates are necessary for obtaining a satisfying experience. The required performance can generally be achieved by introducing an intermediate layer responsible for the simulation of the small part of the surface being in contact with the fingers. In this paper, we present an algorithm controlling the run-time of the concurrent simulation threads. It uses information from previous simulation steps to estimate the time spent in the simulation operation considering also changes in the geometry of the intermediate layer. The introduction of such a local contact simulation introduces damping to the overall system. Its effect on the dynamics of the simulation system is experimentally analysed with an interaction test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., et al.: LAPACK Users’ Guide. Society for Industrial Mathematics (1999)

  2. Astley, O., Hayward, V.: Real-time finite elements simulation of general viscoelastic materials for haptic presentation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE Computer Society, Los Alamitos (1997)

    Google Scholar 

  3. Balaniuk, R.: Using fast local modeling to buffer haptic data. In: PUG99: Proceedings of the Fourth PHANTOM Users Group Workshop (1999)

  4. Barbagli, F., Salisbury, K., Prattichizzo, D.: Dynamic local models for stable multi-contact haptic interaction with deformable objects. In: Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003, HAPTICS 2003, Proceedings 11th Symposium on, pp. 109–116 (2003). doi:10.1109/HAPTIC.2003.1191248

  5. Böttcher, G., Allerkamp, D., Glöckner, D., Wolter, F.: Haptic two-finger contact with textiles. Vis. Comput. 24(10), 911–922 (2008)

    Article  Google Scholar 

  6. Bro-Nielsen, M., Cotin, S.: Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum 15(3), 57–66 (1996)

    Article  Google Scholar 

  7. Cavusoglu, M.C., Tendick, F.: Multirate simulation for high fidelity haptic interaction with deformable. In: Robotics and Automation, 2000, Proceedings ICRA’00, IEEE International Conference on, vol. 3, pp. 2458–2464 (2000). doi:10.1109/ROBOT.2000.846397

  8. Duriez, C., Andriot, C., Kheddar, A.: Signorini’s contact model for deformable objects in haptic simulations. In: Intelligent Robots and Systems, 2004 (IROS 2004), Proceedings 2004 IEEE/RSJ International Conference on, vol. 4, pp. 3232–3237 (2004). doi:10.1109/IROS.2004.1389915

  9. Giere, L.: Präkonditionierung des konjugierten Gradienten-Verfahrens in der Textil-Simulation. Studienarbeit, Welfenlab, Leibniz Universität Hannover (2007)

  10. Glöckner, D.: Analysis of coupled dynamical systems exemplified by an interactive real-time simulation. Master’s thesis, Welfenlab, Leibniz Universität Hannover (2008)

  11. James, D., Pai, D.: A unified treatment of elastostatic contact simulation for real time haptics. In: ACM SIGGRAPH 2005 Courses, p. 141. ACM, New York (2005)

    Chapter  Google Scholar 

  12. Lee, M., Lee, D.: Stability of haptic interface using nonlinear virtual coupling. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4 (2003)

  13. Magnenat-Thalmann, N., Volino, P., Bonanni, U., Summers, I.R., Bergamasco, M., Salsedo, F., Wolter, F.-E.: From physics-based simulation to the touching of textiles: the HAPTEX project. Int. J. Virtual Real. 6(3), 35–44 (2007)

    Google Scholar 

  14. Mahvash, M., Hayward, V.: High-fidelity haptic synthesis of contact with deformable bodies. IEEE Comput. Graph. Appl. 24(2), 48–55 (2004). doi:10.1109/MCG.2004.1274061

    Article  Google Scholar 

  15. Mazzella, F., Montgomery, K., Latombe, J.C.: The forcegrid: a buffer structure for haptic interaction with virtual elastic objects. In: Robotics and Automation, 2002, Proceedings ICRA’02 IEEE International Conference on, vol. 1, pp. 939–946 (2002). doi:10.1109/ROBOT.2002.1013477

  16. Ruspini, D.C., Kolarov, K., Khatib, O.: Haptic interaction in virtual environments. In: Intelligent Robots and Systems, 1997 (IROS ’97), Proceedings of the 1997 IEEE/RSJ International Conference on, vol. 1, pp. 128–133 (1997). doi:10.1109/IROS.1997.649024

  17. Volino, P., Magnenat-Thalmann, N.: Accurate garment prototyping and simulation. Comput. Aided Design Appl. 2(1–4) (2005)

  18. Volino, P., Magnenat-Thalmann, N.: Implicit midpoint integration and adaptive damping for efficient cloth simulation. Comput. Animat. Virtual Worlds 16 (2005)

  19. Zhuang, Y., Canny, J.: Haptic interaction with global deformations. In: Robotics and Automation, 2000, Proceedings ICRA’00 IEEE International Conference on, vol. 3, pp. 2428–2433 (2000). doi:10.1109/ROBOT.2000.846391

  20. Zilles, C.B., Salisbury, J.K.: A constraint-based God-object method for haptic display. In: Intelligent Robots and Systems 95, Human Robot Interaction and Cooperative Robots, Proceedings 1995 IEEE/RSJ International Conference on, vol. 3, pp. 146–151. IEEE Computer Society, Los Alamitos (1995). doi:10.1109/IROS.1995.525876

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Böttcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttcher, G., Allerkamp, D. & Wolter, FE. Multi-rate coupling of physical simulations for haptic interaction with deformable objects. Vis Comput 26, 903–914 (2010). https://doi.org/10.1007/s00371-010-0450-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0450-1

Keywords

Navigation