Skip to main content
Log in

View-dependent exploration of massive volumetric models on large-scale light field displays

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We report on a light-field display based virtual environment enabling multiple naked-eye users to perceive detailed multi-gigavoxel volumetric models as floating in space, responsive to their actions, and delivering different information in different areas of the workspace. Our contributions include a set of specialized interactive illustrative techniques able to provide different contextual information in different areas of the display, as well as an out-of-core CUDA-based raycasting engine with a number of improvements over current GPU volume raycasters. The possibilities of the system are demonstrated by the multi-user interactive exploration of 64 Gvoxel data sets on a 35 Mpixel light field display driven by a cluster of PCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agus, M., Gobbetti, E., Guitián, J.A.I., Marton, F., Pintore, G.: GPU accelerated direct volume rendering on an interactive light field display. Comput. Graph. Forum 27(2), 231–240 (2008)

    Article  Google Scholar 

  2. Agus, M., Bettio, F., Giachetti, A., Gobbetti, E., Iglesias Guitián, J., Marton, F., Nilsson, J., Pintore, G.: An interactive 3D medical visualization system based on a light field display. Vis. Comput. 25(9), 883–893 (2009)

    Article  Google Scholar 

  3. Bruckner, S., Gröller, M.E.: Instant volume visualization using maximum intensity difference accumulation. Comput. Graph. Forum 28(3) (2009)

  4. Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative context-preserving exploration of volume data. IEEE Trans. Vis. Comput. Graph. 12(6), 1559–1569 (2006)

    Article  Google Scholar 

  5. Cignoni, P., Scopigno, R., Tarini, M.: A simple normal enhancement technique for interactive non-photorealistic renderings. Comput. Graph. 29(1), 125–133 (2005)

    Article  Google Scholar 

  6. Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: Gigavoxels: Ray-guided streaming for efficient and detailed voxel rendering. In: Proc. I3D, pp. 15–22 (2009)

  7. Dayal, A., Woolley, C., Watson, B., Luebke, D.: Adaptive frameless rendering. In: Rendering Techniques, pp. 265–276 (2005)

  8. Gobbetti, E., Marton, F., Guitián, J.A.I.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric data sets. Vis. Comput. 24(7–9), 797–806 (2008)

    Article  Google Scholar 

  9. Havran, V., Bittner, J., Sára, J.: Ray tracing with rope trees. In: Proc. Spring Conf. Comput. Graph, pp. 130–140 (1998)

  10. Herzog, R., Eisemann, E., Myszkowski, K., Seidel, H.P.: Spatio-temporal upsampling on the GPU. In: Proc. I3D (2010)

  11. Huang, R., Ma, K.L.: RGVis: Region growing based techniques for volume visualization. In: Proc. Pacific Conf. Comput. Graph. and Applic., pp. 355–363 (2003)

  12. Jones, A., McDowall, I., Yamada, H., Bolas, M.T., Debevec, P.E.: Rendering for an interactive 360-degree light field display. ACM Trans. Graph. 26(3), 40 (2007)

    Article  Google Scholar 

  13. Kraus, M.: Pre-integrated volume rendering for multi-dimensional transfer functions. In: IEEE/EG Symposium on Volume and Point-based Graphics, pp. 97–104 (2008)

  14. Ljung, P.: Adaptive sampling in single-pass, GPU-based raycasting of multiresolution volumes. In: Proc. Volume Graphics, pp. 39–46 (2006)

  15. Luo, Y., Guitián, J.A.I., Gobbetti, E., Marton, F.: Context preserving focal probes for exploration of volumetric medical data sets. In: Second 3D Physiological Human Workshop (2009)

  16. Niski, K., Cohen, J.D.: Tile-based level of detail for the parallel age. IEEE Trans. Vis. Comput. Graph. 13, 1352–1359 (2007)

    Article  Google Scholar 

  17. Popov, S., Günther, J., Seidel, H.P., Slusallek, P.: Stackless kd-tree traversal for high performance GPU ray tracing. Comput. Graph. Forum 26(3), 415–424 (2007)

    Article  Google Scholar 

  18. Ropinski, T., Rezk-Salama, C., Hadwiger, M., Ljung, P.: Gpu volume raycasting with advanced illumination. In: Eurographics Tutorial 4 (2009)

  19. Rusinkiewicz, S., Burns, M., DeCarlo, D.: Exaggerated shading for depicting shape and detail. ACM Trans. Graph. 25(3), 1199–1205 (2006)

    Article  Google Scholar 

  20. Segovia, B., de Iehl, J.C., Mitanchey, R., Péroche, B.: Non-interleaved deferred shading of interleaved sample patterns. In: Graphics Hardware, pp. 53–60 (2006)

  21. Viola, I., Kanitsar, A., Groller, M.E.: Importance-driven feature enhancement in volume visualization. IEEE Trans. Vis. Comput. Graph. 11(4), 408–418 (2005)

    Article  Google Scholar 

  22. Vollrath, J.E., Schafhitzel, T., Ertl, T.: Employing complex GPU data structures for the interactive visualization of adaptive mesh refinement data. In: Proc. Volume Graphics, pp. 55–58 (2006)

  23. Yang, L., Sander, P.V., Lawrence, J.: Geometry-aware framebuffer level of detail. Comput. Graph. Forum 27(4), 1183–1188 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Gobbetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iglesias Guitián, J.A., Gobbetti, E. & Marton, F. View-dependent exploration of massive volumetric models on large-scale light field displays. Vis Comput 26, 1037–1047 (2010). https://doi.org/10.1007/s00371-010-0453-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0453-y

Keywords

Navigation