Skip to main content
Log in

Constructing up to G 2 continuous curve on freeform surface

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents new methods for G 1 and G 2 continuous interpolation of an arbitrary sequence of points on an implicit or parametric surface with prescribed tangent direction and both tangent direction and curvature vector, respectively, at every point. We design a G 1 or G 2 continuous curve in three-dimensional space, construct a so-called directrix vector field using the space curve and then project a special straight line segment onto the given surface along the directrix vector field. With the techniques in classical differential geometry, we derive a system of differential equations for the projection curve. The desired interpolation curve is just the projection curve, which can be obtained by numerically solving the initial-value problems for a system of first-order ordinary differential equations in the parametric domain associated to the surface representation for the parametric case or in three-dimensional space for the implicit case. Several shape parameters are introduced into the resulting curve, which can be used in subsequent interactive modification such that the shape of the resulting curve meets our demand. The presented method is independent of the geometry and parameterization of the base surface, and numerical experiments demonstrate that it is effective and potentially useful in patterns design on surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohl, H.: Kurven minimaler Energie auf getrimmten Fälchen. PhD thesis, University of Stuttgart, Stuttgart, Germany (1999)

  2. Carnarinha, M., Silva, L.F., Crouch, P.: Splines of class c k on non-Euclidean spaces. IMA J. Math. Control Inf. 12(4), 399–410 (1995)

    Article  Google Scholar 

  3. Crouch, P., Silva, L.F.: The dynamic interpolation problem: on Riemannian manifolds, Lie groups, and symmetric spaces. J. Dyn. Control Syst. 1(2), 177–202 (1995)

    Article  MATH  Google Scholar 

  4. Dietz, R., Hoschek, J., Jütteler, B.: An algebraic approach to curves and surfaces on the sphere and other quadrics. Comput. Aided Geom. Des. 10(3–4), 211–229 (1993)

    Article  MATH  Google Scholar 

  5. Do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  6. Flöry, S., Hofer, M.: Constrained curve fitting on manifolds. Comput. Aided Des. 40(1), 25–34 (2008)

    Article  Google Scholar 

  7. Gu, X.F., He, Y., Qin, H.: Manifold splines. Graph. Models 68(3), 237–254 (2006)

    Article  MATH  Google Scholar 

  8. Hartmann, E.: G 2 interpolation and blending on surfaces. Vis. Comput. 12(4), 181–192 (1996)

    MATH  Google Scholar 

  9. Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. ACM Trans. Graph. 23(3), 284–293 (2004)

    Article  Google Scholar 

  10. Hughes, J., Möller, T.: Building an orthonormal basis from a unit vector. J. Graph. Tools 4(4), 33–35 (1999)

    Google Scholar 

  11. Lamnii, A., Mraoui, H., Sbibih, D.: Recursive computation of Hermite spherical spline interpolants. J. Comput. Appl. Math. 213(2), 439–453 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, J., Hoschek, J., Hartmann, E.: G n−1 functional splines for interpolation and approximation of curves, surfaces and solids. Comput. Aided Geom. Des. 7(2), 209–220 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Noakes, L., Heinzinger, G., Paden, B.: Cubic splines on curved spaces. IMA J. Math. Control Inf. 6(4), 456–473 (1989)

    Article  MathSciNet  Google Scholar 

  14. Park, F.C., Ravani, B.: Bézier curve on Riemannian manifolds and Lie groups with kinematics applications. ASME J. Mech. Des. 117(1), 36–40 (1995)

    Article  Google Scholar 

  15. Pegna, J., Wolter, F.E.: Surface curve design by orthogonal projection of space curves onto free-form surfaces. ASME J. Mech. Des. 118(1), 45–52 (1996)

    Article  Google Scholar 

  16. Popiel, T., Noakes, L.: Bézier curves and C 2 interpolation in Riemannian manifolds. J. Approx. Theory 148(2), 111–127 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Popiel, T., Noakes, L.: C 2 spherical Bézier splines. Comput. Aided Geom. Des. 23(3), 261–275 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pottmann, H., Hofer, M.: A variational approach to spline curves on surfaces. Comput. Aided Geom. Des. 22(7), 693–709 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  20. Puig-Pey, J., Gálvez, A., Iglesias, A.: Helical curves on surface for computer aided geometric design and manufacturing. Lect. Notes Comput. Sci. 3044, 771–784 (2004)

    Google Scholar 

  21. Qu, J., Sarma, R.: The continuous non-linear approximation of procedurally defined curves using integral B-splines. Eng. Comput. 20(1), 22–30 (2004)

    Article  Google Scholar 

  22. Renner, G., Weiß, V.: Exact and approximate computation of B-spline curves on surfaces. Comput. Aided Des. 36(4), 351–362 (2004)

    Article  Google Scholar 

  23. Shoemake, K.: Animation rotation with quaternion curves. Comput. Graph. 19(3), 245–256 (1985)

    Article  Google Scholar 

  24. Sprott, K., Ravani, B.: Ruled surfaces, Lie groups and mesh generation. In: Proceedings of the 1997 ASME Design Engineering Technical Conference, Sacramento, CA, USA, pp. 14–17 (1997)

  25. The Math Works Inc.: Using MATLAB. The Math Works. Version 6, Natick (2000).

    Google Scholar 

  26. Wang, X.P., Zhang, W.Z., Zhou, L.S., Zhang, L.Y.: Constructing G 1 continuous curve on a free-form surface with normal projection. Int. J. Comput. Math. (2008). doi:10.1080/00207160802624349

    Google Scholar 

  27. Wang, X.P., Zhou, R.R., Ye, Z.L., Zhang, L.Y.: Constructing spherical curves by interpolation. Adv. Eng. Softw. 38(3), 150–157 (2007)

    Article  MathSciNet  Google Scholar 

  28. Wang, X.P., Zhou, R.R., Yu, Z.Y., Ye, Z.L.: Interpolation and blending on parametric surface. J. Softw. 15(3), 451–460 (2004)

    MATH  MathSciNet  Google Scholar 

  29. Wolter, F.E., Tushy, S.T.: Approximation of high-degree and procedural curves. Eng. Comput. 8(2), 61–80 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Meng, Y., Wang, Z. et al. Constructing up to G 2 continuous curve on freeform surface. Vis Comput 26, 813–822 (2010). https://doi.org/10.1007/s00371-010-0462-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0462-x

Keywords

Navigation