Skip to main content
Log in

Real-time data driven deformation with affine bones

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

An Erratum to this article was published on 20 July 2010

Abstract

Data driven deformation is increasingly important in computer graphics and interactive applications. From given mesh example sequences, we train a deformation predictor and manipulate a specific style of surface deformation interactively using only a small number of control points. The latest approach of learning the connection between rigid bone transformations and control points uses a statistically based framework, called canonical correlation analysis. In this paper, we extend this approach to a skinned mesh with affine bones, each of which conveys a nonrigid affine transformation. However, it is difficult to discover the underlying relationship between control points and nonrigid transformations. To address this issue, we present a two-layer regression framework; one layer being from control points to rigid and the other layer being from rigid to nonrigid transformations. Our contributions also include bone-vertex weight smoothing, enabling the distribution of each bone’s influence across neighboring vertices. We can alleviate distortion around regions where nearby bones undergo various transformations and improve deformations reaching beyond the learned subspaces. Experimental results show that our method can achieve more general deformations including flexible muscle bulges or twists. The performance of our implementation is comparable to the latest approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. ACM Trans. Graph. 24(3), 408–416 (2005). http://doi.acm.org/10.1145/1073204.1073207

    Article  Google Scholar 

  2. Chai, J., Hodgins, J.K.: Performance animation from low-dimensional control signals. ACM Trans. Graph. 24(3), 686–696 (2005). http://doi.acm.org/10.1145/1073204.1073248

    Article  Google Scholar 

  3. nVidia CUDA: Compute unified device architecture (CUDA). http://developer.nvidia.com/ (2009)

  4. Der, K.G., Sumner, R.W., Popović, J.: Inverse kinematics for reduced deformable models. ACM Trans. Graph. 25(3), 1174–1179 (2006). http://doi.acm.org/10.1145/1141911.1142011

    Article  Google Scholar 

  5. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 317–324. ACM Press/Addison-Wesley Publishing Co., New York (1999). http://doi.acm.org/10.1145/311535.311576

    Chapter  Google Scholar 

  6. Feng, W.W., Kim, B.U., Yu, Y.: Real-time data driven deformation using kernel canonical correlation analysis. ACM Trans. Graph. 27(3), 1–9 (2008). http://doi.acm.org/10.1145/1360612.1360690

    Article  Google Scholar 

  7. Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Trans. Graph. 23(3), 522–531 (2004). http://doi.acm.org/10.1145/1015706.1015755

    Article  Google Scholar 

  8. James, D.L., Twigg, C.D.: Skinning mesh animations. ACM Trans. Graph. 24(3), 399–407 (2005). http://doi.acm.org/10.1145/1073204.1073206

    Article  Google Scholar 

  9. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 165–172. ACM Press/Addison-Wesley Publishing Co., New York (2000). http://doi.acm.org/10.1145/344779.344862

    Chapter  Google Scholar 

  10. Magnenat-Thalmann, N., Laperrire, R., Thalmann, D., Montréal, U.D.: Joint-dependent local deformations for hand animation and object grasping. In: Proceedings on Graphics Interface ’88, pp. 26–33 (1988)

  11. Mohr, A., Gleicher, M.: Building efficient, accurate character skins from examples. ACM Trans. Graph. 22(3), 562–568 (2003). http://doi.acm.org/10.1145/882262.882308

    Article  Google Scholar 

  12. Rost, R.J.: OpenGL(R) Shading Language, 2nd edn. Addison-Wesley, New York (2006)

    Google Scholar 

  13. Shoemake, K., Duff, T.: Matrix animation and polar decomposition. In: Proceedings of the Conference on Graphics Interface ’92, pp. 258–264. Morgan Kaufmann Publishers Inc., San Francisco (1992)

    Google Scholar 

  14. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. 23(3), 399–405 (2004). http://doi.acm.org/10.1145/1015706.1015736

    Article  Google Scholar 

  15. Sumner, R.W., Zwicker, M., Gotsman, C., Popović, J.: Mesh-based inverse kinematics. ACM Trans. Graph. 24(3), 488–495 (2005). http://doi.acm.org/10.1145/1073204.1073218

    Article  Google Scholar 

  16. Wang, R.Y., Pulli, K., Popović, J.: Real-time enveloping with rotational regression. ACM Trans. Graph. 26(3), 73 (2007). http://doi.acm.org/10.1145/1276377.1276468

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Uck Kim.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00371-010-0517-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, BU., Feng, WW. & Yu, Y. Real-time data driven deformation with affine bones. Vis Comput 26, 487–495 (2010). https://doi.org/10.1007/s00371-010-0474-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0474-6

Keywords

Navigation