
LLNL-CONF-423218

Streaming Compression of
Hexahedral Meshes

M. Isenburg, C. Courbet

February 5, 2010

Computer Graphics International
Singapore, Singapore
June 9, 2010 through June 11, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Noname manuscript No.
(will be inserted by the editor)

Streaming Compression of Hexahedral Meshes

paper 208

the date of receipt and acceptance should be inserted later

Abstract We describe a method for streaming compression
of hexahedral meshes. Given an interleaved stream of ver-
tices and hexahedra our coder incrementally compresses the
mesh in the presented order. Our coder is extremely memory
efficien when the input stream documents when vertices are
referenced for the last time (i.e. when it contains topologi-
cal finalizatio tags). Our coder then continuously releases
and reuses data structures that no longer contribute to com-
pressing the remainder of the stream. This means in practice
that our coder has only a small fraction of the whole mesh in
memory at any time. We can therefore compress very large
meshes—even meshes that do not fi in memory.

Compared to traditional, non-streaming approaches that
load the entire mesh and globally reorder it during compres-
sion, our algorithm trades a less compact compressed repre-
sentation for significan gains in speed, memory, and I/O ef-
ficien y. For example, on the 456k hexahedra “blade” mesh,
our coder is twice as fast and uses 88 times less memory
(only 3.1 MB) with the compressed fil increasing about
3% in size. We also present the firs scheme for predictive
compression of properties associated with hexahedral cells.

1 Introduction

Numerical simulations require the computation domain to
be discretized. For some problems a simple uniformly struc-
tured grid is sufficient However, the use of unstructured
meshes becomes necessary when the domain boundary is
complex or when the size or shape of cells needs adaptation
to the physics of the simulation. Although mixed element
meshes are sometimes used, most meshes only have a single
cell type: for 3D problems these are either tetrahedra or hex-
ahedra. Recently hexahedral meshes have received a lot of

Address(es) of author(s) should be given

attention because of several desirable properties: they usu-
ally enable to build meshes with fewer elements and exhibit
better numerical behavior in various problems, e.g. for stress
analysis [1]. Although the automatic generation of hexahe-
dral meshes tends to be more difficul than that of tetrahedral
meshes, there are now a number of algorithms [2, 16, 18]
that can generate high-quality hexahedral meshes.

The improvements in technology over the last decade
have allowed scientists to run more and more accurate nu-
merical simulations using larger and larger meshes. How-
ever, the growth in computing power has far outpaced that
of memory capacity and bandwidth. This poses several prob-
lems for the handling of large meshes. Tremendous amounts
of disk space have to be used for raw data storage, and a lot
of time is spent on data transfer, to the point that simulations
are generally I/O bound. To alleviate this problem, special-
ized mesh compression algorithms are used to decrease the
size of the mesh and attached quantities.

In this article, we present an algorithm for streaming
compression of hexahedral meshes. Previous, non-streaming
approaches for compressing hexahedral meshes aim solely
at the lowest possible bit-rate. Due to their large memory re-
quirements and their inefficien I/O behavior they are slow
or even unable to compress very large meshes. Our com-
pression and decompression methods on the other hand are
specificall designed to keep memory footprint low and to
interleave computation and I/O. We follow a strategy that
has already proven successful for compressing triangle [12]
and tetrahedral [13] meshes but adapt it for hexahedral ele-
ments. Furthermore, we also present the—to our knowledge—
firs method for predictive compression of data associated
with the hexahedral cells of an unstructured mesh.

2

2 Preliminaries

Unstructured hexahedral meshes consist of n vertices and m
cells and typically n is just slightly higher than m. Each ver-
tex has an x, y, and z coordinate that specify a discrete loca-
tion. These coordinates are called the geometry of the mesh.
Each cell references eight different vertices to form a hexa-
hedral element. This connects the vertices into a graph-like
structure that is called the connectivity of the mesh. Often
there are also mesh properties (e.g. pressure, temperature or
velocity values) that are associated with vertices or cells.

Standard indexed formats store the geometry as a floa
array with three coordinates per vertex and the connectivity
as an integer array with eight indices per hexahedron. Op-
tional properties are stored in corresponding arrays. Vertices
and hexahedra can appear in any permutation in the arrays.
This convenience comes at the price of bloated connectiv-
ity storage costs at 8 log2 n bits per hexahedron. These costs
can in practice be reduced to a constant number of bits per
hexahedron by enforcing a more “canonical” order onto the
mesh. This is the strategy of most mesh compressors.

2.1 Mesh Compression

Most compression schemes are specialized for meshes with
either triangular [19, 12], polygonal [6], tetrahedral [3, 13],
or hexahedral [7, 14] elements (with [17] being an excep-
tion). Connectivity and geometry are usually encoded with
clearly distinct (but often interwoven) techniques as one is
of combinatorial and the other of numerical nature. Most
coders firs encode the connectivity and then use it to assist
with geometry compression. Floating-point geometry and
properties are often quantized to a user-specifie number of
precision bits, but fully lossless schemes exists as well [11].

The fundamental assumption of all compression schemes
(except [15]) is that the particular order in which mesh ver-
tices and mesh elements are stored does not need to be pre-
served. Most schemes firs construct the mesh connectivity
graph, traverse it in some deterministic manner, and encode
vertices and elements as they are encountered—thereby re-
ordering them. Hence, the original layout of the mesh is irre-
vocably lost. This has been acceptable as—historically—the
original mesh layout was rarely intentional but merely an ar-
tifact of the application that generated the mesh [9].

2.2 Hexahedral Mesh Compression

Three algorithms have been published on the subject of hex-
ahedral mesh compression [7, 14, 15]. Isenburg and Alliez [7]
extend the concept of degree coding (that was introduced by
Touma and Gotsman for triangle meshes [19]) to compress
the connectivity of hexahedral meshes. Their algorithm grows

an active hull by traversing the connectivity graph one hexa-
hedron at a time. They record the degree of all unseen edges
(and a few special symbols) which allows the decoder to re-
play this traversal. Entropy coding of edge degrees results
in connectivity compression rates that range from 1.55 bph
(bits per hexahedron) down to 0.18 bph on our test set.

The algorithm of Krivograd et al. [14] is based on the
same idea, but uses vertex instead of edge degrees. They firs
compress the quadrilateral boundary surface of the volume
mesh which becomes the initial hull that is then grown as in
Isenburg and Alliez’s method [7]. They obtain rates similar
to [7] on regular grids but are worse on irregular models.

Lindstrom and Isenburg [15] propose a radically differ-
ent compressor that neither reorders vertices nor hexahedra
and is therefore completely lossless. It also handles non-
manifold meshes or degenerate elements. They compress
connectivity directly in its indexed form by predicting the
eight indices of a hexahedron from preceding ones. This
works because hexahedral meshes found in practice tend to
have regular strides between indices of subsequent hexahe-
dra. Their algorithm is an order of magnitude faster and has
much lower memory consumption than [7] because it does
not reconstruct and traverse the mesh connectivity. Its con-
nectivity compression rates strongly depend on regularities
in the indexing and are as high as 20.4 bph on our test set.

Prat et al. [17] have an algorithm to compress arbitrary
manifolds—including hexahedral meshes. The genericity of
their method negatively impacts compression rates (+400%
on average compared to [7]) making it uncompetitive com-
pared to a dedicated hexahedral mesh compressor.

2.3 Streaming Compression

Most mesh compression algorithms assume that the entire
mesh fit in main memory. Three solutions have been pro-
posed to deal with large meshes that defy this assumption:
cut the mesh into smaller pieces and compress them one by
one [4], employ external memory structures that page mesh
parts from disk when needed [8], or represent the mesh as
a stream of interleaved vertices, elements, and finalizatio
tags and design a new compression scheme that can encode
such a streaming mesh [9] on-the-fl as it streams in [12, 13].

Streaming compression is very memory efficien when
the interleaved stream of vertices and elements contains fi-
nalization tags that document when a vertex was referenced
for the last time. This information enables the compressor
to continuously release and reuse data structures making it
possible to compress gigantic meshes which cannot be han-
dled by non-streaming algorithms. For example, the stream-
ing triangle mesh compressor of Isenburg et al. [12] encodes
the 6 GB “St. Matthew” model using less than 5 MB of
main memory. This paper describes how to design a simi-
lar streaming compressor but for hexahedral meshes.

3

Fig. 1 The layout diagrams [9] for “blade”, “block”, “crank”, “mdg”,
“shaft”, and “steven” show that vertex-compaction [9] is sufficien to
stream these meshes: any vertical line crosses only few green segments.

3 Streaming Hexahedral Mesh Compression

Our compressor requires streaming input: an interleaved se-
quence of vertices, hexahedra, and finalizatio tags. Mesh
generators can easily be modifie to produce meshes in a
streaming format. We can, in fact, directly compress their
output and avoid having to store the uncompressed mesh al-
together. Existing meshes in non-streaming formats need to
be converted. For reasonably coherent meshes this can be
done with vertex-compaction [9]. Isenburg and Lindstrom
use layout diagrams to illustrate the coherence of a mesh.

The layout diagrams of several meshes are shown in Fig-
ure 1. Along the y-axis are the vertices (from top to bot-
tom) and along the x-axis are the hexahedra (from left to
right) in the original order they are stored in their array. The
green segments (horizontal) connect all hexahedra that ref-
erence the same vertex. The width of the streaming mesh
created with vertex-compaction equals the maximal number
of green segments cut by a vertical line—reordering the ver-
tices in order of firs reference merely permutes these seg-
ments vertically. Hexahedral meshes tend to have fairly co-
herent layouts (unlike tetrahedral meshes [13]). Their width
after vertex-compaction is around .5−5% of their size.

Our compressor starts encoding the mesh as soon as the
firs hexahedron and its eight vertices are received. It always
encodes if and how the current hexahedron is adjacent to
previously encoded hexahedra, compresses all new vertices
that are referenced for the firs time, and then deallocates
the data structure associated with all vertices that are refer-
enced for the last time (i.e. that are finalized). As only the
active vertices have to be stored in memory, the width of the
streaming mesh determines maximum memory consump-
tion. In the following section, we detail the compression of
the three components of a mesh: connectivity, geometry (and
vertex properties), and cell properties.

Fig. 2 The ten possible hexahedron configurations green faces and
vertices are active, red faces are new, and red vertices are either new or
joined. At the bottom, the three most frequent operations HUT, STEP
and CORNER in context. Together with the START operation, they are
sufficien to encode a regular grid in scanline order.

3.1 Connectivity Compression

Like Isenburg et al. [13], we maintain an active surface, a
half-edge structure composed of active vertices and quadri-
lateral faces. A vertex of the current hexahedron is added
to the active surface when it is referenced for the firs time
and removed when it is finalized A face of the current hexa-
hedron is added to the active surface when it was previously
not part of it and removed otherwise. Faces are also removed
after all their vertices were finalize (i.e. boundary faces).

The ten ways in which a hexahedron can be face-adjacent
to the active surface are illustrated in Figure 2. The vertices
shown in red for the START, HUT, STEP and CORNER con-
figuratio are usually new and will be compressed (see Sec-
tion 3.2). Occasionally, however, these vertices are already
part of the active surface. Such joined vertices are specifie
using dynamic indexing [12] with log2(width) bits.

For coding efficien y we rotate the current hexahedron
into a canonical configuration For the BRIDGE configura
tion, for example, the active faces will always be f0, f1 and
f3 after rotating (see Figure 3). Then we only need to code
the configuratio type and the following information:

– START: We code for all 8 vertices if they are new or joined. For
coherent meshes there is usually only one START per component.

– HUT: We specify the face f0 on the active surface the hexahedron
is adjacent to and we code whether the 4 vertices are new or joined.

– ROOF: We specify f0 on the active surface, code v4 with dynamic
indexing, and code which of v4’s adjacent faces is f5.

4

Fig. 3 Going from a randomly oriented BRIDGE configuratio (left)
to a canonical BRIDGE configuratio (right). On the right, the vertices
have been rotated such that the active faces are f0, f1 and f3.

– STEP: After we specify f0 we can fin face f1 incident to the
shared edge (which is known due to the canonical order). There
is often only one candidate so that specifying face f1 is in most
cases free. For 2 vertices we code if they are new or joined.

– BRIDGE: We proceed as for STEP to specify f1 and f3.
– CORNER:We code a STEP and let the decoder deduce the follow-
ing: if there exists an active face which contains vertices v1,v0,v4
then the operation is a CORNER and this face is f2. This works in
all but one very special case illustrated in Figure 4. Here the face
exists but is not f2. To assure the decoder makes the correct de-
cision, we output a confirmatio symbol. This special case is rare
and happens only once in all our test models. Thus, the confirma
tion symbol is nearly always the same and adds almost nothing to
the bit budget. We also code if the last vertex is new or joined.

– TUNNEL: We code a BRIDGE and let the decoder deduce that
this is in fact a TUNNEL operation whenever there exists an active
face with vertices v4,v5,v6,v7. There is no ambiguity in this case.

– GAP: We code a STEP and firs let the decoder deduce that it is a
CORNER and then—with the same reasoning—that it is a GAP.

– PIT:We code a STEP and let the decoder deduce aGAP and then—
again with the same reasoning—that it is a PIT.

– DEN: We take the reasoning of PIT one step further.

To summarize: the coder will only distinguish between
START, HUT, ROOF, STEP or BRIDGE. Everything else is
deduced by the decoder. Each operation except START has
to specify the face f0 on the active surface. Doing this each
time with dynamic indexing [12] would be very costly.

When consecutive hexahedra share a face we can specify
face f0 very efficientl by caching the 6 faces of the previous
hexahedron. If we fin face f0 in the cache we can code
it with log2(6) instead of log2(width) bits. Using context-
based entropy coding we can further decrease these costs as
different configuration share faces with similar regularity.
When face f0 is not in the face cache we use the same idea
with an edge cache and a finall a vertex cache. We only
resort to dynamic indexing when this all fails.

In Table 2 we list the compression rates of our scheme
on different models and compare them to those of [7], [14]
and [15]. As expected, our rates are worse than those of
degree-based methods since we compress the hexahedra in
their original order. Unsurprisingly, our method outperforms
the lossless coder that does not reorder vertices as we do
and also preserves the original orientation of hexahedra. The
penalty for streaming is highest for meshes with global reg-

Fig. 4 Special CORNER case: the bottom face is active and shares
three vertices with the current hexahedron. The confirmatio bit is set
to 1, and the operation is a CORNER. However, the top face should no
be shared. Thus, the second confirmatio bit set to 0, meaning that the
operation is not a GAP.

Fig. 5 A closeup on the shaft model, original order (left) and reordered
using a buffer of three hexahedra (right). The original order causes a
cache miss every three hexahedra, the new order has no cache misses.

ularity (e.g. “block” or “cylinder”) that our compressor can-
not exploit. Overall however, after also compressing geom-
etry and properties, the connectivity accounts for a compar-
atively small amount of the total bit budget.

3.1.1 Local Reordering

Locally, hexahedral meshes tend to have the connectivity of
a grid whose cells are often specifie in scanline order (see
Figure 5). There will be a cache miss for each scanline as
soon as the scanlines are longer than two hexahedra. We can
avoid this cache miss if we locally reorder the hexahedra.

Also on more irregular connectivities we get fewer cache
misses and better compression rates when we buffer a num-
ber of hexahedra from which we then greedily pick “the
best” hexahedron and feed it to the compressor. Using a
fi ed-size delay buffer we tried a number of strategies with
an emphasis on speed and simplicity. We briefl describe the
simple spiraling reorderer that performed well in our exper-
iments and that we use in the results that we report.

We label the active faces of the hexahedron in cache with
front, left, right, top, and bottom. When we pick a new hexa-
hedron among those waiting in the buffer, that has one of its
faces in the cache, there are three possibilities for the label
L of this face:

– L is left or right: We setC(horizontal) = L and Dlast = horizontal.

5

Fig. 6 The spiralling reorderer running on an example mesh. The blue,
red and white hexahedra are respectively visited, in cache, and wait-
ing in the buffer. A green arrow denotes the firs possible choice in
order of priority, red arrows choices that would have had a higher
priority but for which there was no corresponding hexahedron in the
buffer. We suppose that the starting configuratio is Dlast = horizontal,
C(horizontal) = right, and C(vertical) = top.

– L is left or right: We setC(vertical) = L and Dlast = vertical.
– L is front: Nothing changes.

To pick the next hexahedron we consider in decreasing
priority among the hexahedra in the buffer:

– the hexahedron that shares the face C(Dlast) with the currently
cached hexahedron,

– the hexahedron that shares the faceC(¯Dlast), where ¯Dlast is vertical
if Dlast is horizontal, and horizontal else.

– the hexahedron that shares the face front,
– the hexahedron that shares one of the the other faces,
– the oldest hexahedron in the buffer.

C(horizontal), C(vertical) and Dlast are then updated
according to this choice. We illustrate this process in Fig-
ure 6. This method has the advantage that the added hexahe-
dra closely “stick” to the active surface.

The curves shown in Figure 7 plot the compression rate
versus the delay buffer size for several models. Increasing
the delay to more than a couple hundred hexahedra usually
does not improve the compression rate any further, because
the greedy strategy then shows its limits. A global strategy
could potentially overcome this drawback, but it would also
greatly decrease the speed of the compressor—eventually
making it equivalent to a non-streaming compressor.

3.2 Geometry Compression

Each time a new vertex is added (during START,HUT, STEP
and CORNER operations), we predict its position and code
the difference between the predicted and actual value.

We use spectral prediction [5, 10] which assumes that
the position of a vertex is determined by the low-frequency
components of the Fourier Transform of the mesh element.
A vertex is then predicted as a linear combination of the
known vertices using weights that zero out the highest pos-
sible number of high frequencies. We list the spectral pre-
diction rules we use in Table 1. They work extremely well
on hexahedral meshes that tend to be geometrically smooth.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 10 100 1000 10000

block.
c1.

cylinder.
grid16.

shaft.
test.

ucd3d.

Fig. 7 Connectivity compression (bph) versus delay buffer size for
several models. Local reordering is usually very efficient but further
increasing the delay shows the limits of greedy strategies.

Table 1 Spectral prediction rules. The vertices appear in the order they
are predicted, i.e. for any given vertex on line i of the table, the vertices
of all previous lines are known.

Vertex Prediction
v0 last vertex
v1 v0
v2 v1
v3 v0 + v2− v3
v4 v0
v7 v3 + v4− v0
v5 v1 + v4− v0
v6 v0− v1 + v2− v3− v4 + v5 + v7

Our implementation has two modes of operation: it can
either uniformly quantize the vertices prior to compression,
perform all predictions in integer arithmetic, and entropy
code the resulting integer residuals or it can avoid quanti-
zation, perform all predictions in floating-poin arithmetic,
and compress the residuals with the method of Isenburg et
al. [11]. In Table 2 we list our geometry compression rates
across our set of test meshes side by side with those of [7]
and [15]. For fair comparison we use a newer version of [7]
that also uses spectral prediction. The implementation of [15]
natively uses spectral prediction.

The degree coder [7] uses more information to predict
v4 in HUT configuration by mirroring the adjacent hexahe-
dron. This gives slightly better compression ratios. However,
most predictions (typically around 90-95%) are made using
the efficien Lorenzo predictor (see Table 1, last row), so this
will always remain a very small improvement.

3.3 Cell Data Compression

Ideally we would like to compress cell data with the same
strategy that has already proven successful for vertex data.
Hence, the prediction would be made using the already pro-

6

Table 2 Comparing compression performance of our coder with [7], [14], and [15]: We report two connectivity rates, one using a delay buffer of
50 hexahedra and one without delay buffer (in parentheses). For geometry compression, we give rates using 16-bits quantization (Q) and lossless
compression (L). We denote with * the meshes that the software provided by Krivograd et al. did not handle.

vertices hexas Connectivity (bph) Geometry (bpv) Total (bph)
[7] [14] [15] Ours [7] [15] Ours [7] [15] Ours

(Q) (L) (Q) (L) (Q) (L) (Q) (L)
block 101,401 93,750 0.07 * 0.07 0.55 (1.00) 0.05 0.2 0.05 2.8 0.1 0.3 0.6 3.6
c1 78,618 71,572 0.59 0.56 1.50 0.94 (1.24) 3.4 14.8 3.2 9.3 4.3 17.8 4.5 10.2
cylinder 500,055 482,900 0.22 0.30 3.01 1.66 (1.91) 0.3 1.8 0.3 1.9 0.5 4.9 2.0 3.6
fru 5,124 4,360 0.97 0.98 3.06 2.20 (2.42) 16.5 55.7 17.4 35.8 20.3 68.5 22.6 44.3
grid 4,096 3,375 0.29 0.4 0.21 1.35 (1.93) 0.4 0.3 0.4 19.5 0.8 0.6 1.8 25.0
hutch 8,790 8,172 0.30 0.48 8.68 2.56 (2.91) 8.5 26.8 7.8 24.9 9.4 37.5 10.9 29.3
mdg-1b 4,510 3,710 0.77 0.93 7.81 2.98 (3.35) 2.8 9.3 2.8 28.7 4.2 19.1 6.4 37.9
shaft 9,218 6,883 1.70 * 18.55 4.04 (5.63) 16.5 42.3 17.4 30.0 23.8 75.2 27.3 44.2
steven 96,030 81,832 0.05 * 1.96 1.04 (1.00) 3.3 14.7 3.7 9.7 3.9 19.2 5.4 12.4
test 3,198 2,386 0.87 1.09 20.40 2.53 (4.02) 4.5 10.8 5.7 34.0 6.9 34.9 10.2 48.1
ucd3d 2,646 2,000 0.47 * 0.30 2.52 (4.50) 1.9 4.67 2.0 29.9 3.0 6.4 5.2 42.1

Fig. 8 Examples of possible cell neighborhoods for prediction: (left)
a CORNER on a grid, (center) the CORNER configuratio of Figure
4, and (right) a GAP configuratio with irregular neighborhood. For
readability, we show the dual of the mesh. Hexahedra are represented
as colored cubes (red: new hexahedron, blue: active hexahedra, gray:
hexahedra that are in the neighborhood but may no longer be active).

cessed cells of the neighborhood with a spectral predictor on
the dual of the mesh. However, two problems arise:

First, the dual of a hexahedral mesh is generally not a
hexahedral mesh itself (except in the case of a grid). Thus,
the configuratio of the neighborhood can vary a lot between
hexahedra as shown in Figure 8. It would be expensive, if not
impossible to store the prediction weights for every possible
configuratio of the neighborhood. Alternatively the com-
pressor and decompressor could determine the configuratio
of the neighborhood and compute the weights with respect
to this configuratio on-the-fl . However, computing spec-
tral weights for a typical neighborhood is a costly operation
and requires the inversion of a 2n×2n matrix.

Second, using the complete hexahedron neighborhood
requires additional storage: We would have to store the cell
data for all processed hexahedra that still have one or more
unfinalize vertices (shown as grey and blue cells in Fig-
ure 8). This goes against our objective to keep the memory
footprint of our algorithm as small as possible.

For these reasons we use a simpler prediction scheme
that is faster and more memory efficient We predict cell
data using only the hexahedra that are face-adjacent to the
current hexahedron (illustrated by blue cells in Figure 8).
These hexahedra have at least the corresponding active face
(but usually a few more) on the active surface. We simply

Fig. 9 Cell data prediction weights for the different configurations
The red hexahedron is the new cell whose data is to be predicted. Blue
hexahedra are the active ones that are used for prediction.

store copies of the cell data of a hexahedron with each of
its active face on the active surface. When these faces be-
come inactive and are removed from the active surface the
cell data is released along with the face.

Another benefi of this scheme is that there are only the
10 possible neighborhood configuration we already distin-
guish for connectivity coding. This enables us to precom-
pute the weights and store them in a lookup table (see Fig-
ure 9). The weights are obvious for symmetric configura
tions: they are all the same and add up to 1. We tried two
different approaches to determine the weights for the non-
symmetric configuration BRIDGE, GAP and PIT. We com-
puted spectral weights from a 3× 3× 3 grid neighborhood,
the 3D equivalent of the method presented in [5]. We also
computed least squares weights on the “blade” model—they
were the always same to a precision of at least 10−3.

7

Table 3 Cell data compression rates in bits per hexahedron for each of
the twelve properties associated with hexahedra in the “cedre” model.

Quantity 12 bits 16 bits Lossless
K 1.83 4.44 18.1
L 1.99 5.17 11.6
P 2.39 5.35 10.8
T 2.32 5.20 16.0
Vx 2.74 6.05 23.3
Vy 2.68 5.94 23.2
Vz 1.97 4.66 16.4
YCH4 1.39 3.47 14.4
YCO2 2.28 5.17 15.1
YH2O 2.28 5.18 14.9
YN2 1.48 3.67 12.2
YO2 1.94 4.19 14.7

It may be noted that all the weights are positive. That
means that the result of the prediction will always lie within
the convex hull of the values of all the cells used for pre-
diction. That usually results in a systematic prediction error,
because the predictor is unable to accurately extrapolate, for
example in the typical case of a locally monotonous scalar
field Because of this, we use a second-order predictor.

Let c1, . . . ,ck be the data at known cells of the neigh-
borhood, and w1, . . . ,wk the weights used to predict the un-
known value cu. The first-orde prediction of cu and the pre-
diction residual are:{

c̄u = ∑k
i=1wk.ck

ru = cu − c̄u
(1)

We simply use the same prediction rule to predict the resid-
ual from the residuals of neighbor cells r1, . . . ,rk, and code
the difference r2u between the real and expected residuals:{

r̄u = ∑k
i=1wk.rk

r2u = ru − r̄u
(2)

The decoder can then retrieve the original value as c̄u +
r̄u + r2u. Coding the second-order residual r2u instead of the
first-orde residual ru drastically reduces the entropy. For our
test models, the second-order scheme halved the entropy of
residuals on average for 12 bits quantization.

Table 3 gives the bitrates achieved using our algorithm
on the “cedre” dataset. This model comes from a compu-
tational flui dynamics combustion simulation with twelve
properties attached to the cells (see Figure 10, right).

3.4 Compressing large models

The advantage of streaming over non-streaming compres-
sion becomes more and more apparent as models are grow-
ing in size. The memory footprint of our compressor re-
mains low even when compressing very large meshes. In
Table 4 we compare our memory consumption with that of
[7]. For fair comparison we use a version of [7] that has been

optimized for speed and reduced memory consumption. The
tests were run on an Intel core 2 duo running at 2.66GHz
(our implementation uses only one core). We do not com-
pare with [14] as their unoptimized proof-of-concept soft-
ware is neither speed nor memory efficient

Our streaming compressor greatly outperforms the de-
gree coder [7] with a memory footprint that is orders of mag-
nitude smaller. The non-streaming degree coder is in fact not
able to compress the “crank” dataset on our 32-bit operating
system because there is not enough RAM to accommodate
the compressor’s memory needs.

The lossless compressor of Lindstrom and Isenburg [15]
was not originally designed for streaming compression. We
modifie their source code to enable streaming operation
at compression (!) time. However, since their format has
no mechanism to store finalizatio information in the com-
pressed fil decompression will still not be streaming (and
have a much much larger memory footprint). The result-
ing coder is slower than the original one, but has a drasti-
cally reduced memory footprint because it no longer accu-
mulates the entire vertex data in memory during compres-
sion (but still during decompression). As their connectivity
coding scheme is much simpler than our scheme their modi-
fie coder is still faster than ours. It also has a smaller mem-
ory footprint (approximately 4 times more compact) since
it only maintains the active vertices whereas our coder also
keeps track of active faces. However, our compression rate is
lower and—more importantly—we can compress cell data.

4 Conclusion

We have described a scheme for streaming compression of
hexahedral meshes that scales to very large meshes. Our al-
gorithm is much faster than non-streaming approaches be-
cause it interleaves computation and I/O. It also has an or-
ders of magnitude smaller memory footprint because it stores
only a small fraction of the whole mesh at any time. Using
local reordering in a delay buffer we are able to somewhat
mitigate the overhead for compressing the mesh in “stream
order” although our connectivity compression rates can be
noticable worse on very regular meshes. For most practical
applications, however, this has only a minor effect on the to-
tal bitrate which is typicaly dominated by the costs for com-
pressing geometry and properties. A representative result is
the performance on the 456k hexahedra “blade” mesh: com-
pared to [7] our coder is twice as fast and uses 88 times less
memory (only 3.1 MB) while the compressed fil increasing
only by about 3% in total size.

We also have shown how to compress cell data with
spectral predictions from neighboring cell data maintained
on the active surface. Numerical simulations often store a
fair number of physical properties with hexahedral cells that
can account for a large portion of the storage costs. For the

8

Fig. 10 The “blade” (left), “crank” (center) and “cedre” (right) models. The “blade” and “cedre” models have properties attached to cells.

Table 4 Comparing the performance of our coder with [7] and our modificatio of [15] on large models. For our algorithm we report two results:
one without delay buffer and one with a delay of 50 hexahedra (in parentheses). The reported geometry rates are for lossless compression. The
given memory footprint is the peak heap usage reported by GNU memusage. The timings for [7] do not include reading the fil into memory. The
rates for the modifie version of [15] do not accommodate finalizatio (this means that the memory footprint at decompression time will be large).

Vertices Hexas Width Connectivity (bph) Geometry (bpv) Memory (MB) Time (s)
(%) [7] [15] Ours [7] [15] Ours [7] [15] Ours [7] [15] Ours

blade 479k 456k 1.17 0.02 0.85 0.78 (0.45) 16.8 20.8 16.7 (16.8) 273.8 1.8 1.9 (3.1) 2.0 0.6 0.7 (1.0)
crank 2M 2M 0.90 0.98 0.82 (0.46) 12.3 9.1 (9.1) 3.2 7.6 (11.9) 3.0 3.4 (5.3)
crank 49M 48M 0.35 0.36 0.48 (0.28) 10.7 6.3 (6.3) 16.5 62.5 (97.9) 72 95 (142)

“cedre” model, for example, over 50% of the fil stores cell
data. It is thus important to be able to efficientl compress
these properties and to best of our knowledge the method
we present here is the firs to support it. Our cell data pre-
diction scheme can easily be integrated into other compres-
sors [7, 14]. However, it would be difficul to do this for [15]
as this algorithm does not maintain a sufficientl large hex-
ahedral neighborhood for efficien spectral predictions. It
only provides access to the last hexahedron that (if it hap-
pens to be a neighbour) would limit us to simplest spectral
prediction rule that is equivalent to delta-coding.

Demo Software: This paper is accompanied by software containing
a fully functional streaming compressor (a Windows executable) and a
few of our models. You also fin a viewer that can read the compressed
format and as a tool to plot layout diagrams. The README.txt fil
contains detailed instructions how to run the software.

Prepared by LLNL under Contract DE-AC52-07NA27344.

References

1. Benzley, Perry, Merkley, Clark, Sjaardema (1995) A compari-
son of all-hexahedral and all-tetrahedral finit element meshes
for elastic and elasto-plastic analysis. In: International Meshing
Roundtable

2. Blacker (1996) The cooper tool. In: International Meshing
Roundtable

3. Guthe, Gumhold, Strasser (1999) Tetrahedral mesh compression
with the cut-border machine. In: Visualization

4. Ho, Lee, Kriegman (2001) Compressing large polygonal models.
In: Visualization

5. Ibarria, Lindstrom, Rossignac (2007) Spectral interpolation on
3x3 stencils for prediction and compression. Journal of Computers

6. Isenburg (2002) Compressing polygon mesh connectivity with de-
gree duality prediction. In: Graphics Interface

7. Isenburg, Alliez (2002) Compressing hexahedral volume meshes.
In: Graphical Models

8. Isenburg, Gumhold (2003) Out-of-core compression for gigantic
polygon meshes. In: SIGGRAPH

9. Isenburg, Lindstrom (2005) Streaming meshes. In: Visualization
10. Isenburg, Ivrissimtzis, Gumhold, Seidel (2005) Geometry predic-

tion for high degree polygons. In: Spring Conference on Computer
Graphics

11. Isenburg, Lindstrom, Snoeyink (2005) Lossless compression of
predicted floating-poin geometry. Computer-Aided Design

12. Isenburg, Lindstrom, Snoeyink (2005) Streaming compression of
tetrahedral volume meshes. In: Eurographics Symposium on Ge-
ometry Processing

13. Isenburg, Lindstrom, Gumhold, Shewchuk (2006) Streaming com-
pression of tetrahedral volume meshes. In: Graphics Interface

14. Krivograd, Trlep, Zalik (2008) A hexahedral mesh connectivity
compression with vertex degrees. Computer-Aided Design

15. Lindstrom, Isenburg (2008) Lossless compression of hexahedral
meshes. In: IEEE Data Compression Conference

16. Muller-Hannemann (2001) Shelling hexahedral complexes for
mesh generation. Journal of Graph Algorithms and Applications

17. Prat, Gioia, Bertrand, Meneveaux (2005) Connectivity compres-
sion in an arbitrary dimension. The Visual Computer

18. Staten, Owen, Blacker (2005) Unconstrained paving and plaster-
ing: A new idea for all hexahedral mesh generation. In: Interna-
tional Meshing Roundtable

19. Touma, Gotsman (1998) Triangle mesh compression. In: Graphics
Interface

