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Abstract Model-based image segmentation has been exten-
sively used in medical imaging to learn both shape and ap-
pearance of anatomical structures from training datasets. The
more training datasets are used, the more accurate is the seg-
mented model as we account for more information about its
variability. However, training datasets of large size with a
proper sampling of the population may not always be avail-
able. In this paper, we compare the performance of statisti-
cal models in the context of lower limb bones segmentation
using MR images when only a small number of datasets is
available for training. For shape, both PCA-based priors and
shape memory strategies are tested. For appearance, meth-
ods based on intensity profiles are tested, namely mean in-
tensity profiles, multivariate Gaussian distributions of pro-
files and multimodal profiles from EM clustering. Segmen-
tation results show that local and simple methods perform
the best when a small number of datasets is available for
training. Conversely, statistical methods feature the best seg-
mentation results when the number of training datasets is
increased.
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1 Introduction

Building meaningful priors for model-based image segmen-
tation purposes is an important topic in medical imaging. To
account for a large variety in both shape and appearance,
numerous datasets are usually required in a training stage.
Atlas-based methods are designed in the hypothesis that a
significant number of training datasets may yield a reason-
able mean model (i.e. in the sense of a population mean)
as well as meaningful modes of variation. Those methods
usually define a reasonable estimation of the prior using the
principal modes of variation (i.e. variations may be con-
trolled with few parameters). They have been successfully
used in coarse-to-fine approaches where the algorithm starts
with a rough approximation of the prior (i.e. with few de-
grees of freedom) and evolves adding more variation until
reaching a steady state [14, 19].

In the literature, shape variations are often described us-
ing Principal Component Analysis (PCA) [19, 22, 14, 2, 4,
6] of Point Distribution Models (PDM) [5]. From a sufficient
number of shapes with known point correspondence, a mean
shape is calculated. During the segmentation, a mesh initial-
ized as the mean shape is deformed until it fits a desired
target shape. PCA-based methods allow the mesh to be de-
formed only in the range of estimated variations. In this way,
deformations occur in a predictable way since they origi-
nate from the principal variations observed from the datasets
used to build the statistical model. Regarding the appear-
ance, methods such as Active Shape Models (ASM) [6] and
Active Appearance Models (AAM) [7] were proposed to
account for the main intensity variation around and within
structures of interest respectively.

However, the number of datasets required to account for
both the shape and appearance of a structure may be an is-
sue. First, medical imaging acquisitions require time and re-
sources, and this may limit the number of datasets available
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for training. Second, the large number of acquisition proto-
cols and hardware characteristics (especially in case of ver-
satile modalities such as MRI) tend to produce images with
a large variety of intensity distribution for the same struc-
ture of interest. Additionally, noise and artifacts (e.g. patient
movement and partial volume effect) are likely to corrupt
the image intensity. Those factors strongly affect the con-
struction of priors, as they bring meaningless intensity in-
formation into the appearance priors. Also, the manual seg-
mentation of images by an expert, which is required for the
extraction of shapes, is a tedious task and is a limiting fac-
tor for the availability of training datasets. Finally, the large
natural variability of shape and appearance cannot be well
represented by a Gaussian distribution assumed by PCA and
thus capturing all the shape variations is still very challeng-
ing. As a result, the number of required datasets often seems
insufficient to fully capture variations in both shape and ap-
pearance, especially in case of 3D modeling [13]. Various
works such as FEM vibrational modes [4] have been pro-
posed to artificially produce additional modes of variation,
but it seems that this approach is mainly restricted to cope
with intra-subject variability.

In this paper, we propose to study various shape and
appearance priors in the context of lower limb bones seg-
mentation using MR images and few training datasets. Two
training sets are tested: one with only three datasets fea-
turing a rather homogenous intensity distribution and the
other with three more datasets featuring MRI artifacts. For
shape modeling, both PCA and shape memory strategies
are tested. PCA-based methods are known to need several
datasets to be meaningful, while shape memory method re-
quires in practice only one dataset. For appearance model-
ing, methods based on intensity profiles are tested, namely
mean intensity profiles, multivariate Gaussian distributions
of profiles and multimodal profiles from EM clustering. Our
objective is to find the most efficient strategy, i.e. the strategy
that is robust against the low number of datasets and their
intensity inhomogeneities. This strategy would have the ad-
vantage to be more easily integrated in a clinical environ-
ment where the need of quick results is vital, regardless of
the number of datasets.

2 MRI data

2.1 Acquisitions

For this study, six acquisitions were performed on six dif-
ferent subjects (4 females and 2 males, aged between 25
and 35). Protocols used for each acquisition are detailed in
Table 1. The acquisitions took place in two different loca-
tions. Three subjects were scanned at the St Mary’s Hos-
pital, London, UK on a GE Medical Systems 1.5T MRI

Table 1 MRI protocols used to scan the 6 subjects.

Subject TR/TE(ms) FOV(cm)/Matrix Resolution(mm)
#1 4.15/1.69 35/256x256 1.37x1.37x5
#2 4.15/1.69 35/256x256 1.37x1.37x5
#3 4.15/1.69 35/256x256 1.37x1.37x5
#4 5.06/2.23 43/256x256 0.84x0.84x2
#5 4.34/1.56 40/256x256 0.78x0.78x2
#6 5.09/2.22 43/256x256 0.84x0.84x2

Fig. 1 Some MRI artifacts: (a) surface coil artifact on three distinctive
spots, (b) slice-to-slice interference artifact at hip level and (c) subject
motion artifact at the overlap between two consecutive slabs where the
femur bone is clearly shifted.

device (subjects #4, #5 and #6) and the three other sub-
jects at the University Hospital of Geneva, Switzerland on
a Philips Medical Systems 1.5T MRI device (subjects #1,
#2 and #3). Both acquisitions feature 256x256 matrices but
with a different slice thickness (i.e. 2 mm at London and 5
mm at Geneva). An institutional medical-ethical committee
approved this study and subjects gave their written consent.

Some MR images present strong artifacts like subject
motion, surface coil, slice-to-slice interference and bias field
(see Fig. 1). Subject motion is an artifact created by the
displacement of a structure, which arises when the subject
slightly moves between two consecutive acquisitions. Sur-
face coil is characterized by a very strong signal due to the
close proximity of the subject with the surface coil. Slice-
to-slice interference artifact is due to the cross-excitation of
adjacent slices with contrast loss in reconstructed images.
Finally, bias field is a very common artifact in MR images,
which may be induced by a number of factors such as poor
radio frequency coil uniformity, static field inhomogeneity
and radio frequency penetration.

2.2 Fusion of MRI slabs

An MRI acquisition of the whole lower limb cannot be per-
formed in one scan due to a limited Field of View (FoV) of
the machine. Consecutive scans, known as slabs, are neces-
sary to cover its entire length. The registration of those slabs
is then required to generate a complete MR image of the
lower limbs. The registration is computed thanks to a suffi-
cient overlap, which is used to compute the transformation
matrix between slabs. In our case, we use a rigid registration
based on the manual placement of landmarks.
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Fig. 2 MRI saggital view of the lower limbs before (top) and after (bot-
tom) intensity correction. Note how the intensity has been corrected at
foot level.

However, the registration is not enough to create a sat-
isfactory MR image of the lower limbs. Indeed, intensity
distribution may vary between registered slabs (see top of
Fig. 2), which means the intensity histogram for the same
structure may slightly differ between slabs. This is because
the intensity range of the MR image may change between
slabs (i.e. the minimum and maximum of intensity value is
different). Also, the presence of strong artifacts at the image
boundaries is likely to affect the intensity distribution (in
addition to the common bias field). These artifacts are un-
predictable and may differ in their number and importance
between slabs.

Our solution consists in putting artifact intensity values
into the background, so that when normalizing intensity be-
tween slabs, artifacts do not bias the correction. The nor-
malization is performed using an intensity scaling factor. To
this end, we calculate for each slab the histogram of the
main structures (i.e. bones, muscles and fat) and compute
the scaling factor so that histograms are similar. Finally, a
bias correction is applied on the generic MR image of the
lower limbs to correct intensity inhomogeneities [23], i.e.
to correct the bias field and to smooth the intensity scaling
between slabs (see bottom of Fig. 2).

3 Creation of appearance and shape priors

In this paper, we propose to exploit priors built from both the
appearance and shape of structures in model-based image
segmentation. A set of P training shapes {S1, . . . ,SP}with
corresponding images {I1, . . . , IP } is necessary to model
the priors.

Each shape S is modeled as a 2-simplex mesh [8] de-
fined by N points xi with normals ni:

S = {(x1, n1), . . . , (xN , nN )}

The shapes are produced by a supervised segmentation
approach in which the point correspondence is established

(i.e. landmarks on all P training shapes are located at corre-
sponding positions). This point correspondence, which is the
first necessary step when building shape models with PDM,
is ensured through a registration between training shapes.
Then, the P training shapes are aligned in a common coordi-
nate frame. The most popular method to solve this problem
is the General Procrustes Analysis (GPA) [11, 12], which
aligns the set of P training shapes to their unknown mean by
minimizing the mean squared distance between two shapes
in an iterative procedure. After alignment, dimensionality of
the training set is reduced to find a small set of modes that
best describes the observed variation. This is accomplished
using PCA [16]. For more information on the issues of build-
ing training sets, we refer the interested readers to the recent
review of Heimann et al [13].

3.1 Shape priors

For the shape prior construction, we propose to use both
PCA-based priors (PCA) and shape memory (SMEM).

3.1.1 PCA

After the alignement of the P training shapes into a com-
mon coordinate frame with GPA, a Statistical Shape Model
(SSM) is built [7].

An arbitrary shape S is approximated from the computed
statistics by:

S ≈ T (S + Φ b)

where vector S is the mean shape, Φ is a matrix of M
(M ≤ P ) principal modes (with respective variances λi), b
is a vector of shape parameters and T denotes the alignment
transform.

To estimate the unknown parameters b and T , an iter-
ative procedure is used [6]. To ensure the SSM specificity,
two kinds of constraints are considered: hard or soft.

Hard constraint is defined as:

−3
√
λm ≤ bm ≤ 3

√
λm,∀m ∈ [1,M ]

Soft constraint scales bm to lie inside a hyperellipsoid:∑
b2m/λm ≤ C,∀m ∈ [1,M ]

where C is computed from the χ2
M distribution [6].

When a shape is replaced by its closest shape counter-
part, we qualify this replacement as PCA regularization.



4

3.1.2 SMEM

A single shape can also express a basic prior by using some
of its geometrical properties. In case of a 2-simplex mesh,
a local description of each vertex with respect to its three
neighbors is computed [8]. Only three independent simplex
parameters are necessary, and those are similarity transform
invariant. By using these prerecorded parameters, shape can
be locally recovered. Although this prior is based on a single
representative shape, the similarity invariance property con-
fers more flexibility than encoding the shape as 3D points.
This simple prior based on the simplex parameters is of-
ten denoted as shape memory and is similar to the notion
of strain energy in mechanics.

3.2 Appearance priors

To take appearance into account, intensity profiles pi are
built by sampling the image intensity at each point xi along
the normal direction [7, 8]. From these profiles, various ap-
proaches to build a prior have been presented in the litera-
ture. In this paper, we consider mean intensity profiles (PROF),
multivariate Gaussian distributions of intensity profiles (MGD)
and multimodal profiles (MPAM), which are built from an
EM clustering of intensity profiles (see Fig. 3).

3.2.1 PROF

Mean intensity profiles constitute the simplest appearance
prior. At each corresponding point through all datasets, a
mean intensity profile is computed as:

µi =
P∑

j=1

pi/P

Though faster to compute due to its simplicity, this prior
does not make any assumption about the variance. As a re-
sult, mean intensity profiles are rather poor priors. However,
they have been successfully exploited in previous works [10,
19] when combined with robust similarity measures such as
the Normalized Cross Correlation (NCC) [15].

3.2.2 MGD

Cootes et al. [7] proposed to model the prior of the (nor-
malized) intensity profile at each corresponding point by
a multivariate Gaussian of mean µi and covariance matrix
Σi. This model has been successfully exploited in various
works [6, 13]. As µi and Σi are provided by the prior, the
Mahalanobis distance is usually used as similarity measure.

However, such a distance needs the computation of the
inverse ofΣi. This computation is known to be problematic,

since the inversion of the covariance matrix may lead to sin-
gular matrices. This is especially the case with intensity pro-
files that feature a high dimensional space (i.e. profiles are
large to efficiently describe appearance), but without enough
profiles to represent those dimensions (so called curse of di-
mensionality). In our case, this effect is even more important
as we study statistical models performance when using few
training datasets.

In the literature, several techniques have been proposed
to regularize the covariance matrix, and thus to avoid sin-
gularities [24]. Cootes proposed an alternative approach [6]
consisting in first performing a PCA on Σi, and then com-
puting the Mahalanobis distance directly from the PCA statis-
tics using the principal modes and associated eigenvalues.
With such approach, no matrix inversion needs to be per-
formed. In addition, a dimensionality reduction can be ap-
plied by selecting only the first modes, which leads to an
approximated Mahalanobis distance.

3.2.3 MPAM

The clustering of intensity profiles is formulated in the con-
text of a probability density estimation using Gaussian Mix-
ture Models (GMM) [3]. Intensity profile classes are esti-
mated using the Expectation-Maximization algorithm (EM)
for each mesh but not for each point (i.e. without the need
for any registration). EM is initialized with the Fuzzy C-
Means algorithm (FCM), which is itself initialized with ran-
dom cluster centers.

A large profile length (to efficiently describe appearance)
combined with a coarse sampling of meshes (to speed up
computation) is likely to lead to singular matrices when in-
verting EM covariance matrices during the E-step. To solve
this problem, three distinct methods to regularize the covari-
ance matrix are proposed: Spectral, Diagonal and Constant
Regularization. To determine the number of classes that best
represents the data, a novel non parametric model order se-
lection criterion called Overlap Separation Index (OSI) in-
spired by cluster validity indices [17] is used.

Spatially, the EM classification does not take into ac-
count the neighborhood information of intensity profiles. This
leads to a non spatially smooth distribution of intensity pro-
files into the different clusters, which may impair the fusion
of appearance regions. To take the connectivity between pro-
files into account, the Neighborhood EM algorithm (NEM) [1]
is used. Fig. 3 outlines an example of those different steps
used for intensity profile clustering.

After the classification, each meshMp is associated with
Kp clusters. MPAM are created by the fusion of these Kp

clusters that may vary among meshes. The Kp clusters are
compared between meshes and possibly merged. In order to
merge similar clusters, the Jaccard index is used as a sim-
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ilarity measure. A threshold J between 0 and 1 is used to
decide whether two clusters are equivalent.

The last step consists in providing a geometric embed-
ding for the new clusters. For a set of meshes without point
correspondence, each mesh Mp needs to be registered to
a reference meshM?, on which each posterior probability
is resampled using a closest point approach [3]. However,
since we use a set of P meshes Mp with point correspon-
dence, this registration is not necessary.

At the end, several clusters, or intensity profile priors,
may be assigned at each vertex of reference meshM?, which
leads to a multimodal approach.

Fig. 3 Construction of the MPAM appearance prior of a femur bone.
From an image and a mesh (a), a segmentation is performed (b). In-
tensity profiles are sampled (c), then classified (d) into classes (here,
K={2,3,4}). Using an appropriate criterion, best classification is cho-
sen (here, for K=4). Finally, the classification is spatially smoothed (e).

4 Segmentation based on priors

The proposed segmentation is based on dynamic deformable
models [10, 19]. In such segmentation, a deformable tem-
plate evolves until reaching an equilibrium. Internal forces
regulate its evolution while external forces drive it towards
anatomical boundaries. This section discusses the effect of
abovementioned priors into this deformable model frame-
work.

4.1 Evolution

Dynamic deformable models behave like a particle system,
in which each particle corresponds to a lumped-mass ver-
tex subject to internal and external forces. The dynamics of
the system follow the Newtonian laws of motion, which ex-
press particle state (i.e. position and velocity) with respect
to forces. The resulting time-discretized differential equa-
tion system is solved by an implicit Euler scheme.

A multiresolution scheme is used to produce various lev-
els of detail (LOD) of the shapes [10] (see Fig. 5). The
LOD are then exploited in a coarse-to-fine fashion, improv-
ing the robustness and accuracy of the segmentation evolu-
tion. In case of simultaneous segmentation of more than one

structure, efficient collision response and detection are ap-
plied to prevent interpenetrations [10]. Alternatively, a post-
processing correction method can be used [20]. Forces are
expressed based on the image information, the current model
configuration and the pre-computed priors.

Forces at point xi are expressed as the force of a Hookean
spring:

fi = α ∗ (x̃i − xi)

where x̃i denotes the target point and α is a weighting
coefficient specific to each type of force. We will see in the
following how the target point is computed given the differ-
ent forces. This procedure is hereupon referred to as source-
to-target approach.

4.2 Internal forces based on shape priors

4.2.1 PCA

As depicted in section 3.1.1, the shape priors are expressed
by a SSM built on a PCA. At each iteration, a closest shape Ŝ
is found by projecting the current deformable shape S into
the PCA space. An iterative procedure computes the ade-
quate transformation T and appropriate constrained shape
parameters b = b1, . . . , bM [6].

Hard or soft constraints are applied to discard illegal
configurations. Then, Ŝ = {x̂1, . . . , x̂N} eventually becomes
the target shape and the source-to-target approach is applied:

f
pca
i = αpca(x̂i − xi)

4.2.2 SMEM

In case of a single reference shape used as a prior, both pre-
computed and current simplex parameters are used to derive
new target point positions [8, 10]. A force fsmem

i is then
produced at each point xi.

4.3 External forces based on appearance priors

At each iteration of the evolution, a number W of intensity
profiles {pi

1, . . . ,pi
W } are sampled along the normal ni at

point xi. Among them, a target profile p̃i is chosen, whose
corresponding position is x̃i. Usually, this target profile is
chosen so that it maximizes a similarity criterion or mini-
mizes a distance.
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4.3.1 PROF

In case of mean intensity profiles, a target profile p̃i is se-
lected if it maximizes the Normalized Cross CorrelationNCC
with the mean intensity profile µi:

p̃i = argmax NCC(pi
j ,µi) where j ∈ [1,W ]

4.3.2 MGD

When using a multivariate Gaussian distribution of intensity
profiles, the information from the covariance matrix Σi is
also taken into account. In this case, a target profile p̃i is se-
lected if it minimizes the Mahalanobis distance dM derived
from the computed distribution [6]:

p̃i = argmin dM (pi
j) = (pi − µi)TΣ−1

i (pi − µi)

where j ∈ [1,W ].

As previously said in section 3.2.2, a regularization of
the covariance matrix Σi is necessary to avoid any singu-
larities [18]. However, the Mahalanobis distance dM may
be computed without inverting the covariance matrix, i.e. by
using an alternative approach proposed by Cootes [6].

Given a PCA performed on P profiles pi at vertex xi,
expressed by the principal matrix Φi, the m eigenvalues λil

and the mean intensity profile µi, Mahalanobis distance dM

is defined as:

dM (pi) =
m∑

l=1

b2il
λil

where bi = (bi1, . . . , bim)T is the model parameter vec-
tor of the best fit p̂i of pi given the PCA model:

p̂i = µi + Φibi

4.3.3 MPAM

In case of multimodal profiles, the comparison with multiple
intensity profile priors is considered. Indeed, since the prior
is multimodal, more than one intensity profile prior may
be assigned to xi. In practice, only intensity profile priors
whose posterior probability is higher than a threshold (e.g.
10−3) are considered. This can be done because EM classi-
fication leads to sharp posterior probabilities whose values
are either very high or very low (i.e. quite below 10−3).

Similarly to MGD, the Mahalanobis distance is used as
similarity measure. But this time, a profile pi is compared
with the Ki intensity profile priors associated to xi (i.e. re-
member that each point xi is associated with a series of clus-
ters, whose number may not be the same for every point).

Each point xi is associated with Ki clusters of center µk
i

and covariance matrix Σk
i .

The target profile p̃i of a given point xi is chosen as
one of the W profiles sampled along the normal that has
the smallest Mahalanobis distance dM with one of its Ki

associated clusters:

p̃i = argmin dM (pi
j,k)

where j ∈ [1,W ] and k ∈ [1,Ki] .

Unlike MGD, only the diagonal terms {σk
i,1, . . . , σ

k
i,L}

of the L× L covariance matrix Σk
i are taken into account:

dM (pi
k) = (pi − µi)T diag(1/σk

i,1, . . . , 1/σ
k
i,L)(pi − µi)

where diag(1/σk
i,1, . . . , 1/σ

k
i,L) depicts a diagonal ma-

trix.

Using only the diagonal terms has the advantage to speed
up computation, which may be considerable as the compar-
ison is now multimodal. This makes also sense since the
covariance matrix regularization performed during MPAM
creation strongly reduces the influence of non-diagonal ele-
ments.

5 Experimental setup

Two training sets, D3 and D6 with three and six lower limb
MRI datasets respectively (see Fig. 4 for more details), are
used with Leave-One-Out (LOO) cross validation. A mul-
tiresolution scheme is used to produce four levels of detail
for each structure. For femur bone, the four resolutions con-
sist in N = 514, N = 2056, N = 8224 and N = 32896
vertices respectively. For hip bone, they consist inN = 814,
N = 3256, N = 13024 and N = 52096 vertices respec-
tively (see Fig. 5).

Three appearance models are compared: mean intensity
profiles (PROF) with Normalized Cross Correlation mea-
sure, multivariate Gaussian distributions of intensity profiles
(MGD) and multimodal profiles (MPAM), both with Maha-
lanobis distance. With MGD, PCA takes 95% of the total
intensity into account to compute the approximated Maha-
lanobis distance. To regularize the covariance matrix during
EM iterations, MPAM is created using Constant Regulariza-
tion method coupled with parameter h = 1.0 [3]. Due to the
limited number of training datasets, we prefer not to merge
any mode (i.e. Jaccard index J = 1.0).

Regarding intensity profiles, thirty-one intensities are sam-
pled every 0.5 mm from 12.5 mm inside to 2.5 mm outside
mesh surface at each vertex for PROF and MGD, since those
values were successfully used for the segmentation of bones
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#1 #4

#2 #5

#3 #6

Fig. 4 The six datasets that are used for the experiments with their
image and corresponding reference meshes (i.e. hip bones in blue and
femur bones in green). The three datasets on the left constitute the D3
training set while all datasets together constitute the D6 training set.
Note how rather linear is the intensity distribution between datasets of
D3. Conversely, the three datasets on the right feature a quite hetero-
geneous intensity distribution. Among them, dataset #4 and dataset #6
are strongly subject to MRI artifacts.

in MR images [10, 19]. For MPAM, appropriate values need
to be defined since the appearance prior construction method
is different. Experiments showed that eleven intensities sam-
pled every mm from 5 mm inside to 5 mm outside mesh sur-
face give reasonable results in terms of clustering and seg-
mentation. Those values are thus used in the framework of
this work.

Fig. 5 Detail of the four increasing resolutions (from left to right) for
both femur (top) and hip (bottom) bones. For femur bone, the four
resolutions are N = 514, N = 2056, N = 8224 and N = 32896
vertices respectively. For hip bone, the four resolutions are N = 814,
N = 3256, N = 13024 and N = 52096 vertices respectively.

Table 2 Mean DICE measure (i.e. on all structures and on all seg-
mented datasets) when combining appearance and shape priors on D3
training set.

MGD PROF MPAM
SMEM 88.48 91.98 87.39

PCA 78.82 89.51 89.40

To have a fair comparison between methods, same ini-
tialization and internal forces (i.e. PCA-based prior or shape
memory) are used for every appearance model. The initial-
ization is based on the manual placement of landmarks cou-
pled with a shape interpolation approach [10]. Segmentation
accuracy is assessed with DICE measure (DSC) [9] based on
reference manual segmentations. In the results, femur and
hip bones are both considered as one structure, though they
are both represented by two instances (i.e. left and right). To
simplify the statistical analysis, the DICE measure on each
structure is actually a mean on its both instances. Also, only
datasets #1, #2 and #3 are segmented, since they feature a
more homogeneous intensity distribution (see Fig. 4).

6 Results

First results consist in averaging the DICE measure on all
structures and on all segmented datasets. Using D3 (see Ta-
ble 2), PROF gives the best results, with both SMEM (DSC
= 91.98) and PCA (DSC = 89.51), followed closely by MPAM
with PCA (DSC = 89.40). Results are quite similar using
D6 (see Table 3), PROF performs the best with both SMEM
(DSC = 90.91) and PCA (DSC = 89.14), followed by MPAM
with PCA (DSC = 88.08). MGD coupled with PCA gives by
far the worst results, when using both D3 and D6. Regard-
less of the appearance prior used, SMEM is more accurate
than PCA except when the latter is coupled with MPAM.
When comparing global results on D3 and D6, we notice
that D3 always gives better results.

In a second step, we study in more details the results on
the two separate structures (see some delineations on Fig. 6
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Table 3 Mean DICE measure (i.e. on all structures and on all seg-
mented datasets) when combining appearance and shape priors on D6
training set.

MGD PROF MPAM
SMEM 87.64 90.91 87.19

PCA 70.37 89.14 88.08

Fig. 6 Segmentation of left femur bone from dataset #1 using D3 train-
ing set. Results of PROF (left) and MPAM (right) appearance priors.
Reference mesh is depicted in red, initialization in green, SMEM shape
prior in blue and PCA shape prior in orange.

Fig. 7 Segmentation of left hip bone from dataset #1 using D3 training
set. Results of MGD (left) and PROF (right) appearance priors. Refer-
ence mesh is depicted in red, initialization in green, SMEM shape prior
in blue and PCA shape prior in orange.

and Fig. 7 for femur and hip bones respectively). Using D3
(see Table 4), PROF gives the best results with SMEM for
femur bone (DSC = 92.51). This combination performs also
the best for hip bone (DSC = 91.45). Using D6 (see Table 5),
MPAM coupled with PCA gives the most accurate segmen-
tation for femur bone (DSC = 92.02). However, for hip bone,
PROF with SMEM gives once again the best results (DSC =
90.09). A clear tendency shows that results for femur bone
are clearly better than for hip bone, regardless of the training
set, shape and appearance prior used.

When comparing the influence of shape priors on femur
bone segmentation with D6, we notice very slight differ-
ences between appearance priors, except for MPAM. SMEM
performs the best for hip bone segmentation though (with
both D3 and D6), but once again except for MPAM. When

Table 4 Mean ± standard deviation of DICE measure for each struc-
ture and on all segmented datasets when combining appearance and
shape priors on D3 training set.

Femur MGD PROF MPAM
SMEM 92.28 ± 0.63 92.51 ± 1.36 90.51 ± 0.51

PCA 90.57 ± 1.36 90.52 ± 0.91 90.71 ± 0.90

Hip MGD PROF MPAM
SMEM 84.67 ± 9.84 91.45 ± 2.46 84.27 ± 6.58

PCA 67.07 ± 30.6 88.50 ± 2.07 88.10 ± 3.22

Table 5 Mean ± standard deviation of DICE measure for each struc-
ture and on all segmented datasets when combining appearance and
shape priors on D6 training set.

Femur MGD PROF MPAM
SMEM 91.92 ± 0.89 91.74 ± 1.72 90.46 ± 0.37

PCA 91.97 ± 1.42 91.62 ± 1.71 92.02 ± 0.96

Hip MGD PROF MPAM
SMEM 83.36 ± 5.24 90.09 ± 2.22 83.92 ± 5.65

PCA 48.77 ± 33.1 86.66 ± 2.29 84.13 ± 7.20

comparing the influence of the training set, D3 gives bet-
ter results on hip bone, regardless of the shape and appear-
ance prior used. Conversely, D6 gives better results on femur
bone when PCA is used with all appearance priors.

7 Discussion

Generating statistics from a segmentation framework using
a small amount of training datasets is a quite challenging
work and a difficult task. Indeed, statistics are usually rele-
vant when numerous data are at disposal. However, results
on both training sets D3 and D6 show some trends that we
discuss in this section.

In general, using only three datasets with D3 gives bet-
ter results than six datasets with D6. This may appear as
counter-intuitive: more datasets should lead to better results.
However, the three additional datasets from D6 are mostly
corrupted by noise and artifacts. They also feature a quite
heterogeneous intensity distribution. In this case, adding more
information, which is corrupted, does not improve the ap-
pearance prior but rather weakens it. As a result, external
forces have more difficulties to find the right boundaries.

In general, using shape memory with SMEM gives bet-
ter results than PCA-based priors. This is because SMEM is
a local approach. Given a shape that does not exhibit large
inter-subject variation (i.e. like bones compared to soft or-
gans) and that is sufficiently initialized, SMEM is a quite
robust approach that can deal with few training datasets.
However, PCA is known to give better results when using
more datasets. In fact, a PCA-based evolution tends to be
less sensitive to initialization when a sufficient number of
datasets is available to provide a richer information about
the shape [21]. This is explained by the fact that PCA af-
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fects all the shape vertices in a global manner compared to
the shape memory force, which confers a better robustness
against local artifacts.

As depicted in both Table 4 and Table 5, MGD cou-
pled with PCA gives very bad results when segmenting hip
bone (DSC = 67.07 with D3 and 48.77 with D6). This would
suggest that this combination is the worst: PCA as a shape
prior (in case of few training datasets) and MGD as an ap-
pearance prior. External forces generated by MGD are thus
less efficient than those generated by PROF and MPAM.
This would explain the huge difference of DSC between
D3 and D6, knowing that D6 contains datasets with images
corrupted by noise and artifacts. As a result, those external
forces are more sensitive to internal forces. But since in-
ternal forces based on PCA are also weak due to the few
number of datasets, the segmentation is doomed to give bad
results.

Regarding MPAM, the best results are for femur bone
segmentation when combined with PCA and when using
D6. Though in theory MPAM should need less datasets than
MGD (i.e. a PCA-based appearance method), MPAM seems
to feature a certain sensitivity to noise. Indeed, results for
femur bone are clearly better than for hip bone (when us-
ing both D3 and D6). This is because intensity distribution
is more heterogeneous at hip level, as hip bones are located
close to image top border. This would suggest that the sim-
ilarity measure (i.e. the Mahalanobis distance) should be
optimized to cope with non linear intensity. Moreover, the
intensity profile computation is different for MPAM than
for PROF and MGD. Additional experiments should be per-
formed to determine an optimal intensity profile length for
the segmentation of bones in MR images.

In general, PROF gives the best results (i.e. compared
to MGD and MPAM). We believe there are two explana-
tions for that. First, reference meshes are produced by a su-
pervised approach that uses a semi-automatic segmentation
controlled by manually defined constraints [21]. This semi-
automatic segmentation exploits the same deformable model
evolution coupled with the NCC similarity measure reported
in this paper. This creates a bias, which is likely to give an
advantage to PROF-based appearance prior (i.e. PROF also
uses NCC during the segmentation). Second, NCC similar-
ity measure is known to be more robust to intensity change
(i.e. NCC is affine invariant). Using NCC would thus help
PROF to be more efficient in presence of intensity change
(i.e. especially with the three additional datasets corrupted
by noise and artifacts that are used with D6).

8 Conclusion

When using a small amount of training datasets for a seg-
mentation, results tend to show that local and simple meth-
ods perform the best. As a shape prior, shape memory (SMEM)

gives very good results. As an appearance prior, mean inten-
sity profiles (PROF) gives the best results. We believe these
good results are partly due to the Normalized Cross Corre-
lation (NCC) similarity measure, which is more robust to
intensity change in MR images.

When increasing the number of training datasets, results
tend to show that statistical methods feature the best re-
sults: PCA-based shape prior (PCA) and multimodal profiles
(MPAM) as an appearance prior. Both methods capture more
and more information while the number of training datasets
is increased and we believe that better segmentation results
would be obtained when increasing this number of datasets.
However, this hypothesis only holds when the training data
is of enough quality to produce meaningful and efficient pri-
ors.
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