Skip to main content
Log in

R-D optimized progressive compression of 3D meshes using prioritized gate selection and curvature prediction

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A rate-distortion (R-D) optimized progressive coding algorithm for three-dimensional (3D) meshes is proposed in this work. We propose the prioritized gate selection and the curvature prediction to improve the connectivity and geometry compression performance, respectively. Furthermore, based on the bit plane coding, we develop a progressive transmission method, which improves the qualities of intermediate meshes as well as that of the fully reconstructed mesh, and extend it to the view-dependent transmission method. Experiments on various 3D mesh models show that the proposed algorithm provides significantly better compression performance than the conventional algorithms, while supporting progressive reconstruction efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, J.K., Lee, D.Y., Ahn, M., Kim, J., Kim, C., Kim, C.S.: Progressive compression of 3D triangular meshes using topology-based Karhunen–Loève transform. In: Proc. IEEE ICIP, pp. 3417–3420 (2010)

    Google Scholar 

  2. Alliez, P., Desbrun, M.: Progressive compression for lossless transmission of triangle meshes. In: Proc. ACM SIGGRAPH, pp. 195–202 (2001)

    Google Scholar 

  3. Alliez, P., Desbrun, M.: Valence-driven connectivity encoding for 3D meshes. In: Eurographics’01 Conference Proceedings, pp. 480–489 (2001)

    Google Scholar 

  4. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: MESH: Measuring errors between surfaces using the Hausdorff distance. In: Proc. IEEE ICME, vol. 1, pp. 705–708 (2002)

    Google Scholar 

  5. Deering, M.: Geometry compression. In: Proc. ACM SIGGRAPH, pp. 13–20 (1995)

    Google Scholar 

  6. Gandoin, P.M., Devillers, O.: Progressive lossless compression of arbitrary simplicial complexes. ACM Trans. Graph. 21(3), 372–379 (2002)

    Article  Google Scholar 

  7. Gumhold, S., Amjoun, R.: Higher order prediction for geometry compression. In: Proc. International Conference on Shape Modeling and Applications, pp. 59–66 (2003)

    Google Scholar 

  8. Gumhold, S., Strasser, W.: Real time compression of triangle mesh connectivity. In: Proc. ACM SIGGRAPH, pp. 133–140 (1998)

    Google Scholar 

  9. Heu, J.H., Kim, C.S., Lee, S.U.: SNR and temporal scalable coding of 3-D mesh sequences using singular value decomposition. J. Vis. Commun. Image Represent. 20(7), 439–449 (2009)

    Article  Google Scholar 

  10. Hoppe, H.: Progressive meshes. In: Proc. ACM SIGGRAPH, pp. 99–108 (1996)

    Google Scholar 

  11. Kälberer, F., Polthier, K., Reitebuch, U., Wardetzky, M.: Freelence—coding with free valences. In: Eurographics’05 Conference Proceedings, pp. 469–478 (2005)

    Google Scholar 

  12. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proc. ACM SIGGRAPH, pp. 279–286 (2000)

    Google Scholar 

  13. Kobbelt, L.: \(\sqrt{3}\)-subdivision. In: Proc. ACM SIGGRAPH, pp. 103–112 (2000)

    Google Scholar 

  14. Meyer, M., Lee, H., Barr, A., Desbrun, M.: Generalized barycentric coordinates on irregular polygons. J. Graph. Tools 7(1), 13–22 (2002)

    MATH  Google Scholar 

  15. Moffat, A., Neal, R., Witten, I.H.: Arithmetic coding revisited. In: Proc. IEEE Data Compression Conference, pp. 202–211 (1995)

    Google Scholar 

  16. Peng, J., Kim, C.S., Kuo, C.C.J.: Technologies for 3D mesh compression: A survey. J. Vis. Commun. Image Represent. 16(6), 688–733 (2005)

    Article  Google Scholar 

  17. Peng, J., Kuo, C.C.J.: Geometry-guided progressive lossless 3D mesh coding with octree (OT) decomposition. ACM Trans. Graph. 24(3), 609–616 (2005)

    Article  Google Scholar 

  18. Rossignac, J.: Edgebreaker: connectivity compression for triangle meshes. IEEE Trans. Vis. Comput. Graph. 5(1), 47–61 (1999)

    Article  Google Scholar 

  19. Sim, J.Y., Kim, C.S., Kuo, C.C.J., Lee, S.U.: Rate-distortion optimized compression and view-dependent transmission of 3-D normal meshes. IEEE Trans. Circuits Syst. Video Technol. 15(7), 854–868 (2005)

    Article  Google Scholar 

  20. Taubin, G., Rossignac, J.: Geometric compression through topological surgery. ACM Trans. Graph. 17(2), 84–115 (1998)

    Article  Google Scholar 

  21. Touma, C., Gotsman, C.: Triangle mesh compression. In: Proc. Graph. Interface, pp. 26–34 (1998)

    Google Scholar 

  22. Valette, S., Prost, R.: Wavelet-based progressive compression scheme for triangle meshes: Wavemesh. IEEE Trans. Vis. Comput. Graph. 10(2), 123–129 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Su Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, JK., Lee, DY., Ahn, M. et al. R-D optimized progressive compression of 3D meshes using prioritized gate selection and curvature prediction. Vis Comput 27, 769–779 (2011). https://doi.org/10.1007/s00371-011-0565-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0565-z

Keywords

Navigation