Skip to main content
Log in

Automatic skinning and animation of skeletal models

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present an efficient yet easy-to-implement technique which performs automatic skinning and animation of skeletal models. At a pre-processing stage, a character model is firstly decomposed into a number of segments per bone basis, and each segment is then subdivided into several chunks. A convex cage is automatically created for each chunk. The skinning and animation of skeletal models is achieved via two steps. At the first step, by minimizing a sum of several energy terms, chunk cages are implicitly skinned to the skeleton and animated. These energies are carefully designed to prevent unnatural volume change and guarantee smooth deformation transition between adjacent cages. At the second step, the model mesh vertices, represented as the mean-value coordinates with reference to proper cage vertices, are updated via cage-based deformation technique. Our approach avoids the labor-intensive process of vertex weighting and cage generation. Given the motion of a skeleton, the character model can be animated automatically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Au, O., Tai, C., Chu, H., Cohen-Or, D., Lee, T.: Skeleton extraction by mesh contraction. ACM Trans. Graph. 27(3), 44:1–44:10 (2008)

    Article  Google Scholar 

  2. Avis, D., Bremner, D., Seidel, R.: How good are convex hull algorithms? Comput. Geom. 7(5–6), 265–301 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baran, I., Popovic, J.: Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26(3), 1–8 (2007)

    Article  Google Scholar 

  4. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Chen, M., Weber, O., Gotsman, C.: Variational harmonic maps for space deformation. ACM Trans. Graph. 28(3), 34:1–34:11 (2009)

    Article  Google Scholar 

  6. Ben-Chen, M., Weber, O., Gotsman, C.: Spatial deformation transfer. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, pp. 67–74 (2009)

    Google Scholar 

  7. Bloomenthal, J.: Medial-based vertex deformation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 147–151 (2002)

    Chapter  Google Scholar 

  8. BVH http://en.wikipedia.org/wiki/Biovision-Hierarchy

  9. Capell, S., Green, S., Curless, B., Duchamp, T., Popovic, Z.: Interactive skeleton-driven dynamic deformations. In: SIGGRAPH, pp. 586–593 (2002)

    Google Scholar 

  10. Chen, L., Huang, J., Sun, H., Bao, H.: Cage-based deformation transfer. Comput. Graph. 34, 107–118 (2010)

    Article  Google Scholar 

  11. Cuno, A., Esperanca, C., Oliveira, A.: Shape-sensitive MLS deformation. Vis. Comput. 25(10), 911–922 (2009)

    Article  Google Scholar 

  12. Floater, M.S., Kos, G., Reimers, M.: Mean value coordinates in 3D. Comput. Aided Geom. Des. 22(7), 623–631 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Forstmann, S., Ohya, J., Krohn-Grimberghe, A., McDougall, R.: Deformation styles for spline-based skeletal animation. In: SCA’07, pp. 141–150 (2007)

    Google Scholar 

  14. Guo, Z., Wang, K.C.: Skinning with deformable chunks. Comput. Graph. Forum 24(3), 373–3381 (2005)

    Article  Google Scholar 

  15. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L., Teng, S., Bao, H., Guo, B., Shum, H.: Subspace gradient domain mesh deformation. ACM Trans. Graph. 25(3), 1126–1134 (2006)

    Article  Google Scholar 

  16. Hyun, D.E., Yoon, S.H., Chang, J.W., Seong, J.K., Kim, M.S., Juttler, B.: Sweep-based human deformation. Vis. Comput. 21(8–10), 542–550 (2005)

    Article  Google Scholar 

  17. James, D.L., Twigg, C.D.: Skinning mesh animation. ACM Trans. Graph. 24(3), 399–407 (2005)

    Article  Google Scholar 

  18. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3), 71:1–71:9 (2007)

    Article  Google Scholar 

  19. Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24(3), 561–566 (2005)

    Article  Google Scholar 

  20. Ju, T., Zhou, Q., Panne, M., Choen-Or, D., Neumann, U.: Reusable skinning templates using cage-based deformations. ACM Trans. Graph. 27(5), 122 (2008)

    Article  Google Scholar 

  21. Kavan, L., Zara, J.: Spherical blend skinning: A real-time deformation of articulated models. In: 2005 ACMSIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 9–16 (2005)

    Chapter  Google Scholar 

  22. Kavan, L., Collins, S., Zara, J., O’Sullivan, C.: Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27(4), 105–127 (2008)

    Article  Google Scholar 

  23. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH2000, pp. 165–172 (2000)

    Google Scholar 

  24. Li, J., Ye, J., Wang, Y., Bai, L., Lu, G.: Fitting 3D garment models onto individual human models. Comput. Graph. 34, 742–755 (2010)

    Article  Google Scholar 

  25. Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. ACM Trans. Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  26. Maya, 3DStudio Max. http://usa.autodesk.com/

  27. Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003)

    Google Scholar 

  28. Miller, C., Arikan, O., Fussell, D.: Frankenrigs: Building character rigs from multiple sources. In: SI3D 2010, pp. 31–38 (2010)

    Google Scholar 

  29. Mohr, A., Gleicher, M.: Building efficient, accurate character skins from examples. ACM Trans. Graph. 22(3), 562–568 (2003)

    Article  Google Scholar 

  30. Muico, U., Lee, Y., Popovic, J., Popovic, Z.: Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph. 28(3), 1–9 (2009)

    Article  Google Scholar 

  31. Schaefer, S., Yuksel, C.: Example-based skeleton extraction. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 153–162 (2007)

    Google Scholar 

  32. Sorkine, O.: Laplacian mesh processing. In: Eurographics2005, pp. 53–70 (2005)

    Google Scholar 

  33. Sorkine, O.: Differential Representations for Mesh Processing. Comput. Graph. Forum 25(4), 789–807 (2006)

    Article  Google Scholar 

  34. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 109–116 (2007)

    Google Scholar 

  35. Teran, J., Sifakis, E., Blemker, S., Hing, V., Lau, C., Fedkiw, R.: Creating and simulating skeletal muscle from the visible human data set. IEEE Trans. Vis. Comput. Graph. 11(3), 317–328 (2005)

    Article  Google Scholar 

  36. Weber, O., Sorkine, O., Lipman, Y., Gotsman, C.: Context-aware skeletal shape deformation. Comput. Graph. Forum 25(3), 265–274 (2007)

    Article  Google Scholar 

  37. Xian, C., Lin, H., Gao, S.: Automatic generation of coarse bounding cages from dense meshes. In: IEEE International Conference on Shape Modeling and Applications, pp. 21–27 (2009)

    Chapter  Google Scholar 

  38. Yang, X., Somasekharan, A., Zhang, J.: Curve skeleton skinning for human and creature characters. Comput. Animat. Virtual Worlds 17(3–4), 281–292 (2006)

    Article  Google Scholar 

  39. Yan, H., Hu, S., Martin, R., Yang, Y.: Shape Deformation Using a Skeleton to Drive Simplex Transformations. IEEE Trans. Vis. Comput. Graph. 14(3), 693–706 (2008)

    Article  Google Scholar 

  40. Xu, D., Zhang, H., Wang, Q., Bao, H.: Possion shape interpolation. Graph. Models 68(3), 268–281 (2006)

    Article  MATH  Google Scholar 

  41. Zhang, S., Huang, J., Metaxas, D.: Robust mesh editing using Laplacian coordinates. Graph. Models 73, 10–19 (2011)

    Article  Google Scholar 

  42. Xu, W., Zhou, K.: Gradient domain mesh deformation-a survey. J. Comput. Sci. Technol. 24(1), 6–18 (2009)

    Article  Google Scholar 

  43. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.Y.: Large mesh deformation using volumetric graph Laplacian. ACM Trans. Graph. 24(3), 496–503 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jituo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Lu, G. & Ye, J. Automatic skinning and animation of skeletal models. Vis Comput 27, 585–594 (2011). https://doi.org/10.1007/s00371-011-0585-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0585-8

Keywords

Navigation